Extension of Functions Preserving Certain Smoothness and Compactness of Embeddings for Spaces of Differentiable Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 74-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that functions from the Sobolev spaces $W_p^l(\Omega )$, where $\Omega \subset \mathbb R^n$ is an arbitrary bounded open set, can be extended from $\Omega $ to $\mathbb R^n$ while preserving certain smoothness in the metric of $L_q$, where $q p$. It is established that an extension that preserves certain smoothness in the metric of $L_p$ is possible if and only if the embedding $W_p^l(\Omega )\subset L_p(\Omega )$ is compact.
@article{TM_2005_248_a7,
     author = {V. I. Burenkov},
     title = {Extension of {Functions} {Preserving} {Certain} {Smoothness} and {Compactness} of {Embeddings} for {Spaces} of {Differentiable} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {74--85},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a7/}
}
TY  - JOUR
AU  - V. I. Burenkov
TI  - Extension of Functions Preserving Certain Smoothness and Compactness of Embeddings for Spaces of Differentiable Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 74
EP  - 85
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a7/
LA  - ru
ID  - TM_2005_248_a7
ER  - 
%0 Journal Article
%A V. I. Burenkov
%T Extension of Functions Preserving Certain Smoothness and Compactness of Embeddings for Spaces of Differentiable Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 74-85
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a7/
%G ru
%F TM_2005_248_a7
V. I. Burenkov. Extension of Functions Preserving Certain Smoothness and Compactness of Embeddings for Spaces of Differentiable Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 74-85. http://geodesic.mathdoc.fr/item/TM_2005_248_a7/

[1] Burenkov V.I., Sobolev spaces on domains, Teubner, Stuttgart; Leipzig, 1998, 312 pp. | MR | Zbl

[2] Burenkov V.I., “Extension theorems for Sobolev spaces”, Oper. Theory: Adv. and Appl., 109 (1999), 187–200 | MR | Zbl

[3] Burenkov V.I., “Teoremy prodolzheniya dlya prostranstv Soboleva i prostranstv s obobschennoi gladkostyu dlya vyrozhdayuschikhsya otkrytykh mnozhestv”, Tr. IM NAN Belarusi, 5 (2000), 39–42 | MR

[4] Burenkov V.I., Evans W.D., “Weighted Hardy-type inequalities for differences and the extension problem for spaces with generalized smoothness”, J. London Math. Soc., 57:2 (1998), 209–230 | DOI | MR | Zbl

[5] Burenkov V.I., Verdiev T.V., “Prodolzhenie nulem funktsii iz prostranstv s obobschennoi gladkostyu dlya vyrozhdayuschikhsya oblastei”, Tr. MIAN, 227, 1999, 78–91 | MR | Zbl

[6] Springer, Berlin, 1985, 486 pp.

[7] Maz'ya V.G., Differentiable functions on bad domains, World Sci., Singapore; New Jersey; London; Hong Kong, 1997, 481 pp. | MR

[8] Evans W.D., Harris D.J., “Sobolev embeddings for generalized ridged domains”, Proc. London Math. Soc., 54:3 (1987), 141–175 | DOI | MR | Zbl

[9] Gol'dshtein V., Ramm A.G., “Compactness of the embedding operators for rough domains”, Math. Inequal. and Appl., 4:1 (2001), 127–141 | MR | Zbl

[10] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, 2-e izd., Nauka, M., 1977, 480 pp. | MR

[11] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, 2-e izd., Nauka, M., 1996, 480 pp. | MR