Extension of Functions Preserving Certain Smoothness and Compactness of Embeddings for Spaces of Differentiable Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 74-85

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that functions from the Sobolev spaces $W_p^l(\Omega )$, where $\Omega \subset \mathbb R^n$ is an arbitrary bounded open set, can be extended from $\Omega $ to $\mathbb R^n$ while preserving certain smoothness in the metric of $L_q$, where $q p$. It is established that an extension that preserves certain smoothness in the metric of $L_p$ is possible if and only if the embedding $W_p^l(\Omega )\subset L_p(\Omega )$ is compact.
@article{TM_2005_248_a7,
     author = {V. I. Burenkov},
     title = {Extension of {Functions} {Preserving} {Certain} {Smoothness} and {Compactness} of {Embeddings} for {Spaces} of {Differentiable} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {74--85},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a7/}
}
TY  - JOUR
AU  - V. I. Burenkov
TI  - Extension of Functions Preserving Certain Smoothness and Compactness of Embeddings for Spaces of Differentiable Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 74
EP  - 85
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a7/
LA  - ru
ID  - TM_2005_248_a7
ER  - 
%0 Journal Article
%A V. I. Burenkov
%T Extension of Functions Preserving Certain Smoothness and Compactness of Embeddings for Spaces of Differentiable Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 74-85
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a7/
%G ru
%F TM_2005_248_a7
V. I. Burenkov. Extension of Functions Preserving Certain Smoothness and Compactness of Embeddings for Spaces of Differentiable Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 74-85. http://geodesic.mathdoc.fr/item/TM_2005_248_a7/