New Inequalities in the Littlewood--Paley Theory and Estimates of the~$L_1$ Norm of Trigonometric Series and Polynomials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 64-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Extensions of the Littlewood–Paley theorem to the limit values $p=1$ and $p=\infty$ are applied in order to obtain new lower bounds for the $L_1$ norms of trigonometric series and polynomials. Applications of the method to the estimation of polynomials with quadratic spectrum are suggested.
@article{TM_2005_248_a6,
     author = {S. V. Bochkarev},
     title = {New {Inequalities} in the {Littlewood--Paley} {Theory} and {Estimates} of the~$L_1$ {Norm} of {Trigonometric} {Series} and {Polynomials}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {64--73},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a6/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - New Inequalities in the Littlewood--Paley Theory and Estimates of the~$L_1$ Norm of Trigonometric Series and Polynomials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 64
EP  - 73
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a6/
LA  - ru
ID  - TM_2005_248_a6
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T New Inequalities in the Littlewood--Paley Theory and Estimates of the~$L_1$ Norm of Trigonometric Series and Polynomials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 64-73
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a6/
%G ru
%F TM_2005_248_a6
S. V. Bochkarev. New Inequalities in the Littlewood--Paley Theory and Estimates of the~$L_1$ Norm of Trigonometric Series and Polynomials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 64-73. http://geodesic.mathdoc.fr/item/TM_2005_248_a6/

[1] Zigmund A., Trigonometricheskie ryady, t. 1, 2, Mir, M., 1965

[2] Kolmogoroff A.N., “Une série de Fourier–Lebesgue divergente presque partout”, Fund. math., 4 (1923), 324–328 | Zbl

[3] Kakhan Zh.-P., Sluchainye funktsionalnye ryady, Mir, M., 1973

[4] Bochkarev S.V., “Ryady Valle Pussena v prostranstvakh BMO, $L_1$ i $H^1(D)$ i multiplikativnye neravenstva”, Tr. MIAN, 210 (1995), 41–64 | MR | Zbl

[5] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984

[6] Bochkarev S.V., “Ob odnom metode otsenki $L_1$-normy eksponentsialnoi summy”, Tr. MIAN, 218 (1997), 74–76 | MR | Zbl

[7] Bochkarev S.V., “Multiplikativnye otsenki $L_1$-normy eksponentsialnykh summ”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Izd-vo AFTs, M., 1999, 57–68 | MR

[8] Bochkarev S.V., “Metod otsenki $L_1$-normy eksponentsialnoi summy na osnove arifmeticheskikh svoistv spektra”, Tr. MIAN, 232 (2001), 94–101 | Zbl

[9] Bochkarev S.V., “Novyi metod otsenki integralnoi normy eksponentsialnykh summ, prilozhenie k kvadratichnym summam”, Dokl. RAN, 386:2 (2002), 156–159 | MR | Zbl

[10] Bochkarev S.V., “Multiplikativnye neravenstva dlya funktsii iz prostranstva Khardi $H^1$ i ikh primenenie k otsenke eksponentsialnykh summ”, Tr. MIAN, 243 (2003), 96–103 | Zbl

[11] Bochkarev S.V., “Postroenie bazisov v konechnomernykh prostranstvakh analiticheskikh v kruge funktsii”, DAN SSSR, 264:6 (1982), 1295–1297 | MR | Zbl

[12] Bochkarev S.V., “Postroenie polinomialnykh bazisov v konechnomernykh prostranstvakh analiticheskikh v kruge funktsii”, Recent trends in mathematics, Teubner, Leipzig, 1982, 38–46

[13] Bochkarev S.V., “Postroenie polinomialnykh bazisov v konechnomernykh prostranstvakh analiticheskikh v kruge funktsii”, Tr. MIAN, 164 (1983), 49–74 | MR | Zbl

[14] Bochkarev S.V., “Teorema Khausdorfa–Yunga–Rissa v prostranstvakh Lorentsa i multiplikativnye neravenstva”, Tr. MIAN, 219 (1997), 103–114 | Zbl

[15] Chandrasekkharan K., Arifmeticheskie funktsii, Nauka, M., 1975