Critical Exponents for Nondiagonal Quasilinear Parabolic Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 46-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using the method of nonlinear capacity (integral relations), critical exponents for the nonexistence of nontrivial nonnegative solutions are found for the Cauchy problem for systems of inequalities of the form $(u_i)_t-\operatorname {div} A_i(t,x,u_i,\nabla u_i)\ge b_i\prod _{j=1}^2 u_j^{Q_{ij}}+f_i$, where $Q_{ij}\ge 0$, $u_i=u_i(t,x)\ge 0$, $b_i=b_i(t,x)\ge 0$, and $f_i=f_i(t,x)\ge 0$, $x\in \mathbb R^N$, $t\ge 0$. Under additional assumptions concerning the functions $A_i$, a priori estimates and estimates of the lifespan of solutions are obtained in terms of the behavior of initial data and the functions $f_i$.
@article{TM_2005_248_a4,
     author = {K. O. Besov},
     title = {Critical {Exponents} for {Nondiagonal} {Quasilinear} {Parabolic} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {46--51},
     year = {2005},
     volume = {248},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a4/}
}
TY  - JOUR
AU  - K. O. Besov
TI  - Critical Exponents for Nondiagonal Quasilinear Parabolic Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 46
EP  - 51
VL  - 248
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a4/
LA  - ru
ID  - TM_2005_248_a4
ER  - 
%0 Journal Article
%A K. O. Besov
%T Critical Exponents for Nondiagonal Quasilinear Parabolic Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 46-51
%V 248
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a4/
%G ru
%F TM_2005_248_a4
K. O. Besov. Critical Exponents for Nondiagonal Quasilinear Parabolic Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 46-51. http://geodesic.mathdoc.fr/item/TM_2005_248_a4/

[1] Besov K.O., “O globalnoi razreshimosti polulineinykh parabolicheskikh sistem so smeshannoi pravoi chastyu”, Tr. MIAN, 243 (2003), 66–86 | MR | Zbl

[2] Deng K., Levine H.A., “The role of critical exponents in blow-up theorems: The sequel”, J. Math. Anal. and Appl., 243 (2000), 85–126 | DOI | MR | Zbl

[3] Escobedo M., Levine H.A., “Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations”, Arch. Rat. Mech. and Anal., 129 (1995), 47–100 | DOI | MR | Zbl

[4] Galaktionov V.A., “Ob usloviyakh nesuschestvovaniya v tselom i lokalizatsii reshenii zadachi Koshi dlya odnogo klassa nelineinykh parabolicheskikh uravnenii”, ZhVMiMF, 23:6 (1983), 1341–1354 | MR

[5] Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Samarskii A.A., “O neogranichennykh resheniyakh zadachi Koshi dlya parabolicheskogo uravneniya $u_t=\nabla(u^\sigma\nabla u)+u^\beta$”, DAN SSSR, 252:6 (1980), 1362–1364 | MR | Zbl

[6] Mitidieri E., Pokhozhaev S.I., Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, M., 2001 | MR

[7] Pokhozhaev S.I., Tesei A., “O kriticheskikh pokazatelyakh otsutstviya reshenii dlya sistem kvazilineinykh parabolicheskikh neravenstv”, Dif. uravneniya, 37:4 (2001), 521–528 | MR | Zbl

[8] Samarskii A.A., Galaktionov V.A., Kurdyumov S.P., Mikhailov A.P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR