The Series $\sum\sum\frac{e^{2\pi imnx}}{mn}$ and a~Problem of Chowla
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 204-222

Voir la notice de l'article provenant de la source Math-Net.Ru

The double trigonometric series $U(x):=\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{e^{2\pi imnx}}{\pi mn}$ and $U(\chi,x):=\sum_{m=1}^\infty\sum_{n=1}^\infty\chi_{m,n}\frac{e^{2\pi imnx}}{\pi mn}$ with the hyperbolic phase and coordinate-wise slow multipliers $\chi_{m,n}$ are studied. Complete descriptions of the $\mathcal K$-convergence (summability) sets of the sine series $\Im U(x)$ and the cosine series $\Re U(x)$ are given. The $\mathcal K$-sum of a double series is defined as the common value of the limits of partial sums over expanding families of kites in $\mathbb N^2$. The latter include convex domains in the usual sense, such as rectangles, as well as nonconvex domains, for example, hyperbolic crosses $\{(m,n):1\le mn\le N\}$.
@article{TM_2005_248_a19,
     author = {K. I. Oskolkov},
     title = {The {Series} $\sum\sum\frac{e^{2\pi imnx}}{mn}$ and {a~Problem} of {Chowla}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {204--222},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a19/}
}
TY  - JOUR
AU  - K. I. Oskolkov
TI  - The Series $\sum\sum\frac{e^{2\pi imnx}}{mn}$ and a~Problem of Chowla
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 204
EP  - 222
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a19/
LA  - ru
ID  - TM_2005_248_a19
ER  - 
%0 Journal Article
%A K. I. Oskolkov
%T The Series $\sum\sum\frac{e^{2\pi imnx}}{mn}$ and a~Problem of Chowla
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 204-222
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a19/
%G ru
%F TM_2005_248_a19
K. I. Oskolkov. The Series $\sum\sum\frac{e^{2\pi imnx}}{mn}$ and a~Problem of Chowla. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 204-222. http://geodesic.mathdoc.fr/item/TM_2005_248_a19/