Effective Formulas for Constants in the Stechkin--Gabushin Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 124-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

Explicit and transparent expressions are found for the numbers $S_{n,k}$ involved in the formula $E(N,n,k)= S_{n,k} N^{-\beta /\alpha }$, where $\alpha :=(2k+1)/2n$, $\beta := 1-\alpha $, and $k\in \{0,1,\dots ,n-1\}$, for the best approximation of the operators $d^k/dx^k$ in the $C(\mathbb R_+)$ metric on the class of functions $f$ such that $\|f\|_{L_2(\mathbb R_+)} \infty$ and $\|f^{(n)}\|_{L_2(\mathbb R_+)}\le 1$ by means of linear operators $V$ whose norms satisfy the inequality $\|V\|_{L_2(\mathbb R_+)\to C(\mathbb R_+)}\le N$. Simultaneously, the values of the sharp constants $K_{n,k}$ in the Kolmogorov inequality $\|f^{(k)}\|_{C(\mathbb R_+)}\le K_{n,k}\|f^{(n)}\|^{\alpha }_{L_2(\mathbb R_+)} \|f\|^{\beta }_{L_2 (\mathbb R_+)}$ are determined. The symmetry and regularity properties of the constants, as well as their asymptotic behavior as $n\to \infty$, are studied.
@article{TM_2005_248_a12,
     author = {G. A. Kalyabin},
     title = {Effective {Formulas} for {Constants} in the {Stechkin--Gabushin} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {124--129},
     publisher = {mathdoc},
     volume = {248},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2005_248_a12/}
}
TY  - JOUR
AU  - G. A. Kalyabin
TI  - Effective Formulas for Constants in the Stechkin--Gabushin Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2005
SP  - 124
EP  - 129
VL  - 248
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2005_248_a12/
LA  - ru
ID  - TM_2005_248_a12
ER  - 
%0 Journal Article
%A G. A. Kalyabin
%T Effective Formulas for Constants in the Stechkin--Gabushin Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2005
%P 124-129
%V 248
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2005_248_a12/
%G ru
%F TM_2005_248_a12
G. A. Kalyabin. Effective Formulas for Constants in the Stechkin--Gabushin Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Studies on function theory and differential equations, Tome 248 (2005), pp. 124-129. http://geodesic.mathdoc.fr/item/TM_2005_248_a12/

[1] Stechkin S.B., “Nailuchshie priblizheniya lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl

[2] Gabushin V.N., “O nailuchshem priblizhenii operatora differentsirovaniya na poluosi”, Mat. zametki, 6:5 (1969), 573–582 | MR | Zbl

[3] Taikov L.V., “Neravenstva kolmogorovskogo tipa i nailuchshie formuly chislennogo differentsirovaniya”, Mat. zametki, 4:2 (1968), 233–238 | MR | Zbl

[4] Kalyabin G.A., “Nailuchshie operatory prodolzheniya dlya sobolevskikh prostranstv na polupryamoi”, Funkts. analiz i ego pril., 36:2 (2002), 28–37 | MR | Zbl

[5] Kalyabin G.A., “Tochnye konstanty v neravenstvakh dlya promezhutochnykh proizvodnykh (sluchai Gabushina)”, Funkts. analiz i ego pril., 38:3 (2004), 29–38 | MR

[6] Stechkin S.B., “O neravenstvakh mezhdu verkhnimi granyami proizvodnykh proizvolnoi funktsii na polupryamoi”, Mat. zametki, 1:6 (1967), 665–674 | MR | Zbl

[7] Tikhomirov V.M., Magaril-Ilyaev G.G., “Neravenstva dlya proizvodnykh”, Kommentarii k: Kolmogorov A. N., Matematika i mekhanika, Nauka, M., 1985, 387–390 | MR

[8] Kuptsov N.P., “O tochnykh konstantakh v neravenstvakh mezhdu normami funktsii i ikh proizvodnykh”, Mat. zametki, 41:3 (1987), 313–319 | MR | Zbl

[9] Mitrinovic D.S., Pecaric J.E., Fink A.M., Inequalities involving functions and their integrals and derivatives, Kluwer, Dordrecht etc., 1991, 587 pp. | MR | Zbl

[10] Arestov V.V., Gabushin V.N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matematika, 1995, no. 11, 42–68 | MR | Zbl