Lipschitz Cohomology, Novikov Conjecture, and Expanders
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 59-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present sufficient conditions for the cohomology of a closed aspherical manifold to be proper Lipschitz in the sense of Connes–Gromov–Moscovici. The conditions are stated in terms of the Stone–Čech compactification of the universal cover of a manifold. We show that these conditions are formally weaker than the sufficient conditions for the Novikov conjecture given by Carlsson and Pedersen. Also, we show that the Cayley graph of the fundamental group of a closed aspherical manifold with proper Lipschitz cohomology cannot contain an expander in the coarse sense. In particular, this rules out a Lipschitz cohomology approach to the Novikov conjecture for recent Gromov examples of exotic groups.
@article{TM_2004_247_a5,
     author = {A. N. Dranishnikov},
     title = {Lipschitz {Cohomology,} {Novikov} {Conjecture,} and {Expanders}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {59--73},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_247_a5/}
}
TY  - JOUR
AU  - A. N. Dranishnikov
TI  - Lipschitz Cohomology, Novikov Conjecture, and Expanders
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 59
EP  - 73
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_247_a5/
LA  - ru
ID  - TM_2004_247_a5
ER  - 
%0 Journal Article
%A A. N. Dranishnikov
%T Lipschitz Cohomology, Novikov Conjecture, and Expanders
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 59-73
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_247_a5/
%G ru
%F TM_2004_247_a5
A. N. Dranishnikov. Lipschitz Cohomology, Novikov Conjecture, and Expanders. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 59-73. http://geodesic.mathdoc.fr/item/TM_2004_247_a5/

[1] Calder A., Siegel J., “Homotopy and uniform homotopy”, Trans. Amer. Math. Soc., 235 (1978), 245–270 | DOI | MR | Zbl

[2] Carlsson G., Pedersen E., “Čech homology and the Novikov conjectures for $K$- and $L$-theory”, Math. Scand., 82:1 (1998), 5–47 | MR | Zbl

[3] Connes A., Gromov M., Moscovici H., “Group cohomology with Lipschitz control and higher signatures”, Geom. and Funct. Anal., 3:1 (1993), 1–78 | DOI | MR | Zbl

[4] Dranishnikov A. N., “Asimptoticheskaya topologiya”, UMN, 55:6 (2000), 71–116 | MR | Zbl

[5] Dranishnikov A. N., Gong G., Lafforgue V., Yu G., “Uniform embeddings into Hilbert space and a question of Gromov”, Canad. Math. Bull., 45:1 (2002), 60–70 | MR | Zbl

[6] S. Ferry, A. Ranicki, J. Rosenberg (eds.), Novikov conjectures, index theorems and rigidity, 1, 2, LMS Lect. Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995 | MR

[7] Gromov M., Geometric group theory, V. 2: Asymptotic invariants of infinite groups, LMS Lect. Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[8] Gromov M., “Positive curvature, macroscopic dimension, spectral gaps and higher signatures”, Functional analysis on the eve of the 21st century, v. 2, Progr. Math., 132, Birkhäuser, Boston, 1996, 1–213 | MR | Zbl

[9] Gromov M., “Spaces and questions”, GAFA 2000. Visions in mathematics–Towards 2000, Pt. 1 (Proc. Meet., Tel Aviv, Israel, 1999), Geom. and Funct. Anal., Birkhäuser, Basel, 2000, 118–161, Spec. vol. | MR | Zbl

[10] Gromov M., “Random walk in random groups”, Geom. and Funct. Anal., 13:1 (2003), 73–146 | DOI | MR | Zbl

[11] Higson N., “Bivariant $K$-theory and the Novikov conjecture”, Geom. and Funct. Anal., 10:3 (2000), 563–581 | DOI | MR | Zbl

[12] Higson N., Lafforgue V., Skandalis G., “Counterexamples to the Baum–Connes conjecture”, Geom. and Funct. Anal., 12:2 (2002), 330–354 | DOI | MR | Zbl

[13] Hurder S., “Exotic index theory and the Novikov conjecture”, Novikov conjectures, index theorems and rigidity, v. 1, LMS Lect. Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995, 253–276 | MR

[14] Kato T., “Asymptotic Lipschitz cohomology and higher signature”, Geom. and Funct. Anal., 6:2 (1996), 346–369 | DOI | MR | Zbl

[15] Kato T., “Asymptotic Lipschitz maps, combable groups and higher signatures”, Geom. and Funct. Anal., 10:1 (2000), 51–110 | DOI | MR | Zbl

[16] Lubotzky A., Discrete groups, expanding graphs and invariant measures, Birkhäuser, Basel, Boston, Berlin, 1994 | MR | Zbl

[17] Matoušek J., “On embedding expanders into $\ell_p$ spaces”, Israel J. Math., 102 (1997), 189–197 | DOI | MR | Zbl

[18] Milnor J., Stasheff J., Characteristic classes, Princeton Univ. Press, Princeton, NJ, 1974 | MR | Zbl

[19] Roe J., Coarse cohomology and index theory on complete Riemannian manifolds, Mem. AMS, 497, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[20] Roe J., Index theory, coarse geometry, and topology of manifolds, CBMS Reg. Conf. Ser. Math., 90, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[21] Yu G., “The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space”, Invent. Math., 139:1 (2000), 201–240 | DOI | MR | Zbl