Combinatorics of Simplicial Cell Complexes and Torus Actions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 41-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Simplicial cell complexes are special cellular decompositions also known as virtual or ideal triangulations; in combinatorics, appropriate analogues are given by simplicial partially ordered sets. In this paper, combinatorial and topological properties of simplicial cell complexes are studied. Namely, the properties of $f$-vectors and face rings of simplicial cell complexes are analyzed and described, and a number of well-known results on the combinatorics of simplicial partitions are generalized. In particular, we give an explicit expression for the operator on $f$- and $h$-vectors that is defined by a barycentric subdivision, derive analogues of the Dehn–Sommerville relations for simplicial cellular decompositions of spheres and manifolds, and obtain a generalization of the well-known Stanley criterion for the existence of regular sequences in the face rings of simplicial cell complexes. As an application, a class of manifolds with a torus action is constructed, and generalizations of some of our previous results on the moment–angle complexes corresponding to triangulations are proved.
@article{TM_2004_247_a4,
     author = {V. M. Buchstaber and T. E. Panov},
     title = {Combinatorics of {Simplicial} {Cell} {Complexes} and {Torus} {Actions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {41--58},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_247_a4/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - T. E. Panov
TI  - Combinatorics of Simplicial Cell Complexes and Torus Actions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 41
EP  - 58
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_247_a4/
LA  - ru
ID  - TM_2004_247_a4
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A T. E. Panov
%T Combinatorics of Simplicial Cell Complexes and Torus Actions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 41-58
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_247_a4/
%G ru
%F TM_2004_247_a4
V. M. Buchstaber; T. E. Panov. Combinatorics of Simplicial Cell Complexes and Torus Actions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 41-58. http://geodesic.mathdoc.fr/item/TM_2004_247_a4/

[1] Bukhshtaber V. M., Panov T. E., “Deistviya torov, kombinatornaya topologiya i gomologicheskaya algebra”, UMN, 55:5 (2000), 3–106 | MR | Zbl

[2] Bukhshtaber V. M., Panov T. E., Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004 | MR

[3] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981 | MR | Zbl

[4] Alexander J. W., “The combinatorial theory of complexes”, Ann. Math., 31 (1930), 292–320 | DOI | MR | Zbl

[5] Bruns W., Herzog J., Cohen–Macaulay rings,, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[6] Davis M. W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62 (1991), 417–451 | DOI | MR | Zbl

[7] Halperin S., “Rational homotopy and torus actions”, Aspects of topology, LMS Lect. Note Ser., 93, Cambridge Univ. Press, Cambridge, 1985, 293–306 | MR

[8] Hattori A., Masuda M., “Theory of multi-fans”, Osaka J. Math., 40 (2003), 1–68 | MR | Zbl

[9] Izmestiev I., Joswig M., Branched covering, triangulations, and 3-manifolds, , 2001 arXiv: /math.GT/0108202 | MR

[10] Klee V., “A combinatorial analogue of Poincaré's duality theorem”, Canad. J. Math., 16 (1964), 517–531 | MR | Zbl

[11] Masuda M., Panov T., On the cohomology of torus manifolds, , 2003 arXiv: /math.AT/0306100 | MR

[12] Matveev S. V., Algorithmic topology and classification of 3-manifolds, Springer, New York, 2003 | MR

[13] Stanley R. P., Enumerative combinatorics, V. 1, Wadsworth and Brooks/Cole, Monterey, CA, 1986 ; Stenli R., Perechislitelnaya kombinatorika, Mir, M., 1990 | Zbl | MR

[14] Stanley R. P., “$f$-Vectors and $h$-vectors of simplicial posets”, J. Pure and Appl. Algebra, 71 (1991), 319–331 | DOI | MR | Zbl

[15] Stanley R. P., Combinatorics and commutative algebra, 2nd ed., Progr. Math., 41, Birkhäuser, Boston, 1996 | MR | Zbl