Extended Hyperbolic Surfaces in~$R^3$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 267-279

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, I will describe the construction of several surfaces whose intrinsic geometry is hyperbolic geometry, in the same sense that spherical geometry is the geometry of the standard sphere in Euclidean 3-space. I will prove that the intrinsic geometry of these surfaces is, in fact, (a close approximation of) hyperbolic geometry. I will share how I (and others) have used these surfaces to increase our own (and our students') experiential understanding of hyperbolic geometry. (How to find hyperbolic geodesics? What are horocycles? Does a hyperbolic plane have a radius? Where does the area formula $\pi r^2$ fit in hyperbolic geometry?).
@article{TM_2004_247_a19,
     author = {D. W. Henderson},
     title = {Extended {Hyperbolic} {Surfaces} in~$R^3$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {267--279},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_247_a19/}
}
TY  - JOUR
AU  - D. W. Henderson
TI  - Extended Hyperbolic Surfaces in~$R^3$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 267
EP  - 279
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_247_a19/
LA  - en
ID  - TM_2004_247_a19
ER  - 
%0 Journal Article
%A D. W. Henderson
%T Extended Hyperbolic Surfaces in~$R^3$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 267-279
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_247_a19/
%G en
%F TM_2004_247_a19
D. W. Henderson. Extended Hyperbolic Surfaces in~$R^3$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 267-279. http://geodesic.mathdoc.fr/item/TM_2004_247_a19/