Lusternik--Schnirelman Theory and Dynamics. II
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 252-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show how the methods of homotopy theory can be used in dynamics to study the topology of a chain recurrent set. More specifically, we introduce new homotopy invariants $\mathrm {cat}^1(X,\xi)$ and $\mathrm {cat}^1_{\mathrm s}(X,\xi)$ that depend on a finite polyhedron $X$ and a real cohomology class $\xi \in H^1(X;\mathbb R)$ and are modifications of the invariants introduced earlier by the first author. We prove that, under certain conditions, $\mathrm {cat}_{\mathrm s}^1(X,\xi)$ provides a lower bound for the Lusternik–Schnirelman category of the chain recurrent set $R_\xi$ of a given flow. The approach of the present paper applies to a wider class of flows compared with the earlier approach; in particular, it allows one to avoid certain difficulties when checking assumptions.
@article{TM_2004_247_a18,
     author = {M. Farber and T. Kappeler},
     title = {Lusternik--Schnirelman {Theory} and {Dynamics.} {II}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {252--266},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_247_a18/}
}
TY  - JOUR
AU  - M. Farber
AU  - T. Kappeler
TI  - Lusternik--Schnirelman Theory and Dynamics. II
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 252
EP  - 266
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_247_a18/
LA  - ru
ID  - TM_2004_247_a18
ER  - 
%0 Journal Article
%A M. Farber
%A T. Kappeler
%T Lusternik--Schnirelman Theory and Dynamics. II
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 252-266
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_247_a18/
%G ru
%F TM_2004_247_a18
M. Farber; T. Kappeler. Lusternik--Schnirelman Theory and Dynamics. II. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 252-266. http://geodesic.mathdoc.fr/item/TM_2004_247_a18/

[1] Conley C., Isolated invariant sets and the Morse index, CBMS Reg. Conf. Ser. Math., 38, Amer. Math. Soc., Providence, RI, 1978 | MR | Zbl

[2] Conley C., “The gradient structure of a flow, I”, Ergod. Th. and Dyn. Syst., 8 (1988), 11–26 | DOI | MR | Zbl

[3] Dold A., Lectures on algebraic topology, Springer, Berlin, 1972 | MR

[4] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: Metody teorii gomologii, Nauka, M., 1984 | MR

[5] Farber M., “Zeroes of closed $1$-forms, homoclinic orbits and Lusternik–Schnirelman theory”, Topol. Meth. Nonlin. Anal., 19 (2002), 123–152 | MR | Zbl

[6] Farber M., “Lusternik–Schnirelman theory and dynamics”, Lusternik–Schnirelmann category and related topics, Contemp. Math., 316, Amer. Math. Soc., Providence, RI, 2002, 95–111 | MR | Zbl

[7] Farber M., Topology of closed one-forms, Math. Surv. and Monogr., 108, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[8] Farber M., Kappeler T., Latschev J., Zehnder E., “Lyapunov 1-forms for flows”, Ergod. Th. and Dyn. Syst., 24 (2004), 1451–1475 ; arXiv: /math.DS/0210473 | DOI | MR | Zbl

[9] Farber M., Kappeler T., Latschev J., Zehnder E., “Smooth Lyapunov $1$-forms”, Enseign. Math., 50 (2004), 3–17 | MR | Zbl

[10] Latschev J., “Flows with Lyapunov one-forms and a generalization of Farber's theorem on homoclinic cycles”, Intern. Math. Res. Not., 2004, no. 5, 239–247 | DOI | MR | Zbl

[11] Schwartzman S., “Asymptotic cycles”, Ann. Math. Ser. 2, 66 (1957), 270–284 | DOI | MR | Zbl

[12] Schütz D., On the Lusternik–Schnirelman category of a real cohomology class, Preprint, Univ. Münster, Fachber. Math. und Inform., Münster, 2003; http://www.math.uni-muenster.de/inst/sfb/about/publ/heft240.ps

[13] Spanier E., Algebraic topology, Springer, Berlin, 1966 | MR