Lusternik--Schnirelman Theory and Dynamics. II
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 252-266
Voir la notice de l'article provenant de la source Math-Net.Ru
We show how the methods of homotopy theory can be used in dynamics to study the topology of a chain recurrent set. More specifically, we introduce new homotopy invariants $\mathrm {cat}^1(X,\xi)$ and $\mathrm {cat}^1_{\mathrm s}(X,\xi)$ that depend on a finite polyhedron $X$ and a real cohomology class $\xi \in H^1(X;\mathbb R)$ and are modifications of the invariants introduced earlier by the first author. We prove that, under certain conditions, $\mathrm {cat}_{\mathrm s}^1(X,\xi)$ provides a lower bound for the Lusternik–Schnirelman category of the chain recurrent set $R_\xi$ of a given flow. The approach of the present paper applies to a wider class of flows compared with the earlier approach; in particular, it allows one to avoid certain difficulties when checking assumptions.
@article{TM_2004_247_a18,
author = {M. Farber and T. Kappeler},
title = {Lusternik--Schnirelman {Theory} and {Dynamics.} {II}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {252--266},
publisher = {mathdoc},
volume = {247},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2004_247_a18/}
}
M. Farber; T. Kappeler. Lusternik--Schnirelman Theory and Dynamics. II. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 252-266. http://geodesic.mathdoc.fr/item/TM_2004_247_a18/