Could the Poincar\'e Conjecture Be False?
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 247-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two conjectures are stated which imply that the Poincaré hypothesis (asserting that any simply connected closed compact $3$-manifold is the $3$-sphere) is false. The first one claims that, for certain classes of finitely presented groups, the triviality problem is algorithmically undecidable, and the second one claims that certain embeddings of two-dimensional polyhedra in $3$-manifolds can effectively be constructed.
@article{TM_2004_247_a17,
     author = {A. B. Sosinskii},
     title = {Could the {Poincar\'e} {Conjecture} {Be} {False?}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {247--251},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_247_a17/}
}
TY  - JOUR
AU  - A. B. Sosinskii
TI  - Could the Poincar\'e Conjecture Be False?
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 247
EP  - 251
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_247_a17/
LA  - ru
ID  - TM_2004_247_a17
ER  - 
%0 Journal Article
%A A. B. Sosinskii
%T Could the Poincar\'e Conjecture Be False?
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 247-251
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_247_a17/
%G ru
%F TM_2004_247_a17
A. B. Sosinskii. Could the Poincar\'e Conjecture Be False?. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 247-251. http://geodesic.mathdoc.fr/item/TM_2004_247_a17/

[1] Adyan S. I., “Algoritmicheskaya nerazreshimost problem raspoznavaniya nekotorykh svoistv grupp”, DAN SSSR, 103 (1955), 533–535 | MR | Zbl

[2] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR

[3] Hall M., Jr., The theory of groups, Macmillan, New York, 1959 ; Kholl M., Teoriya grupp, IL, M., 1962 | MR | Zbl

[4] Magnus W., Karrass A., Solitar D., Combinatorial group theory: Presentations of groups in terms of generators and relations, Intersci. Publ., New York, 1966 ; Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp: Predstavlenie grupp v terminakh obrazuyuschikh i sootnoshenii, Nauka, M., 1974 | MR | MR | Zbl

[5] Matveev S. V., Algorithmic problems in 3-manifolds, Springer, Berlin, 2003 | MR

[6] Perelman G., The entropy formula for the Ricci flow and its geometric application, , 2002 arXiv: /math.DG/0211159

[7] Perelman G., Ricci flow with surgery on three-manifolds, , 2003 arXiv: /math.DG/0303109

[8] Rabin M., “Recursive unsolvability of group theoretic problems”, Ann. Math. Ser. 2, 67 (1958), 172–194 | DOI | MR | Zbl

[9] Rogers H., Jr., Theory of recursive functions and effective computation, McGraw Hill, New York, 1967 | MR | Zbl

[10] Sossinsky A. B., “Simply connected 3-manifolds and undecidable problems in group theory”, Russ. J. Math. Phys., 7 (2000), 357–362 | MR | Zbl