Dual Homology for the de Rham Cohomology
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 237-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

A divergence operator $\operatorname {div}$ acting on the graded space $\Omega _*(M)$ of smooth multivector fields on a smooth manifold $M$ is defined. This operator turns $\Omega _*(M)$ into a chain complex defining the usual homology of $M$.
@article{TM_2004_247_a16,
     author = {E. G. Sklyarenko},
     title = {Dual {Homology} for the de {Rham} {Cohomology}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_247_a16/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - Dual Homology for the de Rham Cohomology
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 237
EP  - 246
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_247_a16/
LA  - ru
ID  - TM_2004_247_a16
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T Dual Homology for the de Rham Cohomology
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 237-246
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_247_a16/
%G ru
%F TM_2004_247_a16
E. G. Sklyarenko. Dual Homology for the de Rham Cohomology. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 237-246. http://geodesic.mathdoc.fr/item/TM_2004_247_a16/

[1] Barra R., “Fonctions divergentes et distributions invariantes”, Bull. Sci. Math., 105:1 (1981), 49–71 | MR | Zbl

[2] Barra R., “Fonctions divergentes et distributions invariantes, II”, Bull. Sci. Math., 107:2 (1983), 209–217 | MR | Zbl

[3] Cartan H., Séminaire de topologie algébrique, École Norm. Super, Paris, 1948, 1949

[4] Derdzinski A., “Riemannian manifolds with harmonic curvature”, Lect. Notes Math., 1156 (1985), 74–85 | DOI | MR | Zbl

[5] Herz C. S., “Functions which are divergences”, Amer. J. Math., 92:3 (1970), 641–656 | DOI | MR | Zbl

[6] Bott R., Tu L. B., Differentsialnye formy v algebraicheskoi topologii, Nauka, M., 1989 | MR | Zbl

[7] Bredon G. E., Teoriya puchkov, Nauka, M., 1988 | MR

[8] Burbaki N., Algebra. Algebraicheskie struktury. Lineinaya i polilineinaya algebra, Fizmatgiz, M., 1962

[9] Gantmakher F. R., Teoriya matrits, Gostekhteorizdat, M., 1954

[10] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961

[11] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR

[12] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Nauka, M., 1986 | MR

[13] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981

[14] Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979 | MR | Zbl

[15] de Ram Zh., Differentsiruemye mnogoobraziya, IL, M., 1956

[16] Uitni X., Geometricheskaya teoriya integrirovaniya, IL, M., 1960

[17] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR

[18] Khelgason S., Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[19] Sklyarenko E. G., “K teorii obobschennykh mnogoobrazii”, Izv. AN SSSR. Ser. mat., 35:4 (1971), 831–843 | Zbl

[20] Sklyarenko E. G., “Gomologii i kogomologii obschikh prostranstv”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 50, VINITI, M., 1989, 129–266 | MR

[21] Sklyarenko E. G., “O prirode gomologicheskikh umnozhenii i dvoistvennosti”, UMN, 49:1 (1994), 141–198 | MR | Zbl