Dual Homology for the de Rham Cohomology
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 237-246

Voir la notice de l'article provenant de la source Math-Net.Ru

A divergence operator $\operatorname {div}$ acting on the graded space $\Omega _*(M)$ of smooth multivector fields on a smooth manifold $M$ is defined. This operator turns $\Omega _*(M)$ into a chain complex defining the usual homology of $M$.
@article{TM_2004_247_a16,
     author = {E. G. Sklyarenko},
     title = {Dual {Homology} for the de {Rham} {Cohomology}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_247_a16/}
}
TY  - JOUR
AU  - E. G. Sklyarenko
TI  - Dual Homology for the de Rham Cohomology
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 237
EP  - 246
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_247_a16/
LA  - ru
ID  - TM_2004_247_a16
ER  - 
%0 Journal Article
%A E. G. Sklyarenko
%T Dual Homology for the de Rham Cohomology
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 237-246
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_247_a16/
%G ru
%F TM_2004_247_a16
E. G. Sklyarenko. Dual Homology for the de Rham Cohomology. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 237-246. http://geodesic.mathdoc.fr/item/TM_2004_247_a16/