Geometric Simple Connectivity and Low-Dimensional Topology
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 214-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains an informal exposition of the author's approach to the Poincaré Conjecture.
@article{TM_2004_247_a14,
     author = {V. Poenaru},
     title = {Geometric {Simple} {Connectivity} and {Low-Dimensional} {Topology}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {214--227},
     publisher = {mathdoc},
     volume = {247},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_247_a14/}
}
TY  - JOUR
AU  - V. Poenaru
TI  - Geometric Simple Connectivity and Low-Dimensional Topology
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 214
EP  - 227
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_247_a14/
LA  - en
ID  - TM_2004_247_a14
ER  - 
%0 Journal Article
%A V. Poenaru
%T Geometric Simple Connectivity and Low-Dimensional Topology
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 214-227
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_247_a14/
%G en
%F TM_2004_247_a14
V. Poenaru. Geometric Simple Connectivity and Low-Dimensional Topology. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 214-227. http://geodesic.mathdoc.fr/item/TM_2004_247_a14/

[1] Gabai D., “Valentin Poenaru's program for the Poincaré Conjecture”, Geometry, topology and physics for Raoul Bott, ed. S. T. Yau, Intern. Press, Cambridge, MA, 1995, 139–166 | MR | Zbl

[2] Poénaru V., “The collapsible pseudo-spine representation theorem”, Topology, 31:3 (1992), 625–656 | DOI | MR | Zbl

[3] Poenaru V., Infinite processes and the $3$-dimensional Poincaré Conjecture. II: The honeycomb representation theorem, Prepubl. d'Orsay No 93-14, 1993

[4] Poenaru V., Infinite processes and the $3$-dimensional Poincaré Conjecture. III: The algorithm, Prepubl. d'Orsay No 92-10, 1992

[5] Poenaru V., Processus infinis et conjecture de Poincaré en dimension trois. IV: Le theoreme de non-sauvagerie lisse (The smooth tameness theorem), Pt. A: Prepubl. d'Orsay No 93-83, 1993; Pt. B: Prepubl. d'Orsay No 95-33, 1995

[6] Poenaru V., Geometric simple connectivity in smooth four-dimensional topology, An outline: Preprint Trento Univ. UTM649, 2004; Geometric simple connectivity in four-dimensional differential topology, Pt. A: IHES Prepubl. M/01/45, 2001 | Zbl

[7] Poenaru V., The strange compactification theorem, Pt. A: IHES Prepubl. M/95/15, 1995; Pt. B: IHES Prepubl. M/96/43, 1996; Pt. C: IHES Prepubl. M/97/43, 1997; Pt. D: IHES Prepubl. M/97/59, 1997; Pt. E: In preparation

[8] Poenaru V., “$\pi^\infty_1$ and infinite simple homotopy type in dimension $3$”, Low-dimensional topology, Contemp. Math., 233, ed. H. Nencka, Amer. Math. Soc., Providence, RI, 1999, 1–28 | MR | Zbl

[9] Poenaru V., Tanasi C., “Some remarks on geometric simple connectivity”, Acta Math. Hung., 81 (1998), 1–12 | DOI | MR | Zbl

[10] Poenaru V., Tanasi C., Equivariant, almost-arborescent representations of open simply-connected $3$-manifolds; a finiteness result, Mem. AMS, 169, no. 800, Amer. Math. Soc., Providence, RI, 2004 | MR

[11] Travaux de Thurston sur les surfaces, Astérisque, 66–67, eds. A. Fathi, F. Laudenbach, V. Poénaru, Soc. Math. France, Paris, 1979 | MR