Two Applications of Topology to Convex Geometry
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 182-185
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The purpose of this paper is to prove two theorems of convex geometry using the techniques of topology. The first theorem states that if, for a strictly convex body $K$, one may choose continuously a centrally symmetric section, then $K$ must be centrally symmetric. The second theorem states that if every section of a three-dimensional convex body $K$ through the origin has an axis of symmetry, then there is a section of $K$ through the origin which is a disk.
@article{TM_2004_247_a11,
     author = {L. Montejano},
     title = {Two {Applications} of {Topology} to {Convex} {Geometry}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {182--185},
     year = {2004},
     volume = {247},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_247_a11/}
}
TY  - JOUR
AU  - L. Montejano
TI  - Two Applications of Topology to Convex Geometry
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 182
EP  - 185
VL  - 247
UR  - http://geodesic.mathdoc.fr/item/TM_2004_247_a11/
LA  - en
ID  - TM_2004_247_a11
ER  - 
%0 Journal Article
%A L. Montejano
%T Two Applications of Topology to Convex Geometry
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 182-185
%V 247
%U http://geodesic.mathdoc.fr/item/TM_2004_247_a11/
%G en
%F TM_2004_247_a11
L. Montejano. Two Applications of Topology to Convex Geometry. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometric topology and set theory, Tome 247 (2004), pp. 182-185. http://geodesic.mathdoc.fr/item/TM_2004_247_a11/

[1] Aitchison P. W., Petty C. M., Rogers C. A., “A convex body with a false centre is an ellipsoid”, Mathematika, 18 (1971), 50–59 | DOI | MR | Zbl

[2] Larman D. G., “A note in the false centre problem”, Mathematika, 21 (1974), 216–227 | DOI | MR

[3] Mani P., “Fields of planar bodies tangent to spheres”, Monatsh. Math., 74 (1970), 145–149 | DOI | MR | Zbl

[4] Montejano L., “Convex bodies with homothetic sections”, Bull. London Math. Soc., 23 (1991), 381–386 | DOI | MR | Zbl

[5] Rogers C. A., “Sections and projections of convex bodies”, Port. Math., 24 (1965), 99–103 | MR | Zbl