On the Zero Slice of the Sphere Spectrum
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 106-115
Voir la notice du chapitre de livre
We prove the motivic analogue of the statement saying that the zero stable homotopy group of spheres is $\mathbf Z$. In topology, this is equivalent to the fact that the fiber of the obvious map from the sphere $S^n$ to the Eilenberg–MacLane space $K(\mathbf Z,n)$ is $(n+1)$-connected. We prove our motivic analogue by an explicit geometric investigation of a similar map in the motivic world. Since we use the model of the motivic Eilenberg–MacLane spaces based on the symmetric powers, our proof works only in zero characteristic.
@article{TM_2004_246_a6,
author = {V. A. Voevodskii},
title = {On the {Zero} {Slice} of the {Sphere} {Spectrum}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {106--115},
year = {2004},
volume = {246},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a6/}
}
V. A. Voevodskii. On the Zero Slice of the Sphere Spectrum. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 106-115. http://geodesic.mathdoc.fr/item/TM_2004_246_a6/
[1] Dold A., Lashof R., “Principal quasi-fibrations and fiber homotopy equivalence of bundles”, Ill. J. Math., 3 (1959), 285–305 | MR | Zbl
[2] Voevodsky V., Lectures on motivic cohomology 2000/2001, written by Pierre Deligne, 2000/2001
[3] Voevodsky V., “Open problems in the motivic stable homotopy theory, I”, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), Int. Press Lect. Ser., 3, Int. Press, Somerville, MA, 2002, 3–34 | MR | Zbl
[4] Suslin A., Voevodsky V., “Singular homology of abstract algebraic varieties”, Invent. Math., 123:1 (1996), 61–94 | DOI | MR | Zbl