Symmetric Operations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 92-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the article is to construct certain natural cohomological operations acting in the ring of algebraic cobordisms of smooth projective varieties. The Chow traces of these operations coincide with the halves of the Chow traces of certain Landweber–Novikov operations. These operations are used to construct nontrivial maps between Chow rings of different varieties. This technique is applied to the computation of discrete invariants of quadrics.
@article{TM_2004_246_a5,
     author = {A. S. Vishik},
     title = {Symmetric {Operations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {92--105},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a5/}
}
TY  - JOUR
AU  - A. S. Vishik
TI  - Symmetric Operations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 92
EP  - 105
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_246_a5/
LA  - ru
ID  - TM_2004_246_a5
ER  - 
%0 Journal Article
%A A. S. Vishik
%T Symmetric Operations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 92-105
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_246_a5/
%G ru
%F TM_2004_246_a5
A. S. Vishik. Symmetric Operations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 92-105. http://geodesic.mathdoc.fr/item/TM_2004_246_a5/

[1] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR

[2] Brosnan P., “Steenrod operations in Chow theory”, Trans. Amer. Math. Soc., 355:5 (2003), 1869–1903 ; http://www.math.uiuc.edu/K-theory/0370 | DOI | MR | Zbl

[3] Hironaka H., “Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II”, Ann. Math. Ser. 2, 79 (1964), 109–203 | DOI | MR | Zbl

[4] Izhboldin O. T., Vishik A., “Quadratic forms with absolutely maximal splitting”, Contemp. Math., 272 (2000), 103–125 | MR | Zbl

[5] Levine M., Morel F., “Cobordisme algébrique, I”, C. R. Acad. Sci. Paris. Sér. 1, 332 (2001), 723–728 | MR | Zbl

[6] Levine M., Morel F., “Cobordisme algébrique, II”, C. R. Acad. Sci. Paris. Sér. 1, 332 (2001), 815–820 | MR | Zbl

[7] Merkurjev A., Rost's degree formula, , 2001 http://www.math.ucla.edu/~merkurev/papers/ lens.dvi | Zbl

[8] Vishik A., “Motives of quadrics with applications to the theory of quadratic forms”, Geometric methods in the algebraic theory of quadratic forms, Proc. Summer School, Lect. Notes Math., 1835, ed. J.-P. Tignol, Springer, Lens, France, 2000, 2004, 25–101 | MR | Zbl

[9] Voevodsky V., Reduced power operations in motivic cohomology, K-Theory Preprint Archives, No 487 ; , 2001 http://www.math.uiuc.edu/K-theory/0487 | MR