Vanishing Theorems for Locally Conformal Hyperk\"ahler Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 64-91

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a compact locally conformal hyperkähler manifold. We prove a version of the Kodaira–Nakano vanishing theorem for $M$. This is used to show that $M$ admits no holomorphic differential forms and the cohomology of the structure sheaf $H^i(\mathcal O_M)$ vanishes for $i>1$. We also prove that the first Betti number of $M$ is $1$. This leads to a structure theorem for locally conformal hyperkähler manifolds that describes them in terms of $3$-Sasakian geometry. Similar results are proven for compact Einstein–Weyl locally conformal Kähler manifolds.
@article{TM_2004_246_a4,
     author = {M. S. Verbitsky},
     title = {Vanishing {Theorems} for {Locally} {Conformal} {Hyperk\"ahler} {Manifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {64--91},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a4/}
}
TY  - JOUR
AU  - M. S. Verbitsky
TI  - Vanishing Theorems for Locally Conformal Hyperk\"ahler Manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 64
EP  - 91
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_246_a4/
LA  - ru
ID  - TM_2004_246_a4
ER  - 
%0 Journal Article
%A M. S. Verbitsky
%T Vanishing Theorems for Locally Conformal Hyperk\"ahler Manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 64-91
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_246_a4/
%G ru
%F TM_2004_246_a4
M. S. Verbitsky. Vanishing Theorems for Locally Conformal Hyperk\"ahler Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 64-91. http://geodesic.mathdoc.fr/item/TM_2004_246_a4/