Vanishing Theorems for Locally Conformal Hyperk\"ahler Manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 64-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a compact locally conformal hyperkähler manifold. We prove a version of the Kodaira–Nakano vanishing theorem for $M$. This is used to show that $M$ admits no holomorphic differential forms and the cohomology of the structure sheaf $H^i(\mathcal O_M)$ vanishes for $i>1$. We also prove that the first Betti number of $M$ is $1$. This leads to a structure theorem for locally conformal hyperkähler manifolds that describes them in terms of $3$-Sasakian geometry. Similar results are proven for compact Einstein–Weyl locally conformal Kähler manifolds.
@article{TM_2004_246_a4,
     author = {M. S. Verbitsky},
     title = {Vanishing {Theorems} for {Locally} {Conformal} {Hyperk\"ahler} {Manifolds}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {64--91},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a4/}
}
TY  - JOUR
AU  - M. S. Verbitsky
TI  - Vanishing Theorems for Locally Conformal Hyperk\"ahler Manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 64
EP  - 91
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_246_a4/
LA  - ru
ID  - TM_2004_246_a4
ER  - 
%0 Journal Article
%A M. S. Verbitsky
%T Vanishing Theorems for Locally Conformal Hyperk\"ahler Manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 64-91
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_246_a4/
%G ru
%F TM_2004_246_a4
M. S. Verbitsky. Vanishing Theorems for Locally Conformal Hyperk\"ahler Manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 64-91. http://geodesic.mathdoc.fr/item/TM_2004_246_a4/

[1] Alexandrov B., Ivanov S., Weyl structures with positive Ricci tensor, , 2003 arXiv: /math.DG/9902033 | MR

[2] Belgun F. A., “On the metric structure of non-Kähler complex surfaces”, Math. Ann., 317:1 (2000), 1–40 | DOI | MR | Zbl

[3] Besse A., Einstein manifolds, Springer, New York, 1987 ; Бессе А., Эйнштейновы многообразия, Мир, М., 1990 | MR | MR | Zbl

[4] Boyer C. P., “A note on hyper-Hermitian four-manifolds”, Proc. Amer. Math. Soc., 102:1 (1988), 157–164 | DOI | MR | Zbl

[5] Boyer C. P., Galicki K., “3-Sasakian manifolds”, Surv. Diff. Geom., 7 (1999), 123–184 ; arXiv: /hep-th/9810250 | MR

[6] Boyer C. P., Galicki K., “New Einstein metrics in dimension five”, J. Diff. Geom., 57 (2001), 443–463 ; arXiv: /math.DG/0003174 | MR | Zbl

[7] Boyer C. P., Galicki K., Mann B. M., “The geometry and topology of 3-Sasakian manifolds”, J. Reine und Angew. Math., 455 (1994), 183–220 | MR | Zbl

[8] Boyer C. P., Galicki K., Nakamaye M., , Math. Ann., 325, 2003 arXiv: /math.DG/0012047 | DOI | MR

[9] Boyer C. P., Galicki K., Nakamaye M., Sasakian geometry, homotopy spheres and positive Ricci curvature, , 2002 arXiv: /math.DG/0201147 | MR

[10] Calabi E., “Metriques kähleriennes et fibrès holomorphes”, Ann. Sci. École Norm. Supér, 12 (1979), 269–294 | MR

[11] Calderbank D., Pedersen H., “Einstein–Weyl geometry”, Surveys in differential geometry: Essays on Einstein manifolds, eds. M. Wang, C. LeBrun, Intern. Press, Boston, 1999, 387–423 | MR | Zbl

[12] Dragomir S., Ornea L., Locally conformal Kähler geometry, Progr. Math., 155, Birkhäuser, Boston, 1998 | MR | Zbl

[13] Gauduchon P., “La 1-forme de torsion d'une variete hermitienne compacte”, Math. Ann., 267 (1984), 495–518 | DOI | MR | Zbl

[14] Gauduchon P., “Structures de Weyl–Einstein, espaces de twisteurs et varietes de type $S^1\times S^3$”, J. Reine und Angew. Math., 469 (1995), 1–50 | MR | Zbl

[15] Gauduchon P., Ornea L., “Locally conformally Kähler metrics on Hopf surfaces”, Ann. Inst. Fourier, 48:4 (1998), 1107–1127 | MR | Zbl

[16] Gini R., Ornea L., Parton M., Locally conformal Kaehler reduction, , 2002 arXiv: /math.DG/0208208 | MR

[17] Griffiths Ph., Harris J., Principles of algebraic geometry, Wiley-Intersci, New York, 1978 ; Гриффитс Ф., Харрис Дж., Основы алгебраической геометрии, Мир, М., 1982 | MR | Zbl | MR

[18] Ivanov S., Papadopoulos G., , Phys. Lett. B., 497, 2001 arXiv: /hep-th/0008232 | DOI | MR

[19] Ivanov S., Papadopoulos G., , Class. and Quant. Grav., 18, 2001 arXiv: /math.DG/0010038 | DOI | MR

[20] Kamishima Y., Ornea L., Geometric flow on compact locally conformally Kähler manifolds, , 2001 arXiv: /math.DG/0105040 | MR

[21] Kuo Y.-Y., “On almost contact 3-structure”, Tohoku Math. J., 22 (1970), 325–332 | DOI | MR | Zbl

[22] Nishikawa S., Tondeur Ph., “Transversal infinitesimal automorphisms for harmonic Kähler foliations”, Tohoku Math. J. Ser. 2, 40:4 (1988), 599–611 | DOI | MR | Zbl

[23] Obata M., “Affine connections on manifolds with almost complex, quaternionic or Hermitian structure”, Japan. J. Math., 26 (1955), 43–79 | MR

[24] Ornea L., Weyl structures on quaternionic manifolds. A state of the art, , 2001; “Weyl structures”, Selected topics in geometry and mathematical physics, 1, ed. E. Barletta, Univ. Basilicata, Potenza, 2002, 43–80 arXiv: /math.DG/0105041

[25] Ornea L., Piccinni P., “Locally conformal Kähler structures in quaternionic geometry”, Trans. Amer. Math. Soc., 349 (1997), 641–655 | DOI | MR | Zbl

[26] Pedersen H., Poon Y. S., Swann A., “The Einstein–Weyl equations in complex and quaternionic geometry”, Diff. Geom. and Appl., 3 (1993), 309–321 | DOI | MR | Zbl

[27] Sasaki S., “On differentiable manifolds with certain structures which are closely related to almost contact structure”, Tohoku Math. J., 2 (1960), 459–476 | DOI | MR | Zbl

[28] Strominger A., “Superstrings with torsion”, Nucl. Phys. B., 274 (1986), 253–284 | DOI | MR

[29] Swann A., “Hyper-Kähler and quaternionic Kähler geometry”, Math. Ann., 289:3 (1991), 421–450 | DOI | MR | Zbl

[30] Tondeur Ph., Foliations on Riemannian manifolds, Springer, New York, 1988, 247 pp., (Universitext) | MR

[31] Tsukada K., “Holomorphic forms and holomorphic vector fields on compact generalized Hopf manifolds”, Compos. Math., 93:1 (1994), 1–22 | MR | Zbl

[32] Tsukada K., “Holomorphic maps of compact generalized Hopf manifolds”, Geom. Dedicata, 68:1 (1997), 61–71 | DOI | MR | Zbl

[33] Udrişte C., “Structures presque coquaternioniennes”, Bull. Math. Soc. Sci. Math. Roumanie, 13 (1969), 487–507 | MR | Zbl

[34] Vaisman I., “Generalized Hopf manifolds”, Geom. Dedicata, 13:3 (1982), 231–255 | DOI | MR | Zbl

[35] Vaisman I., “A survey of generalized Hopf manifolds”, Rend. Sem. Mat. Torino, 1983no. : Spec. Iss., 205–221 | MR | Zbl

[36] Verbitsky M., , Asian J. Math., 6, no. 4, 2002 arXiv: /math.AG/0112215 | MR