Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2004_246_a23, author = {V. V. Shokurov}, title = {Letters of {a~Bi-rationalist} {V:} {Mld's} and {Termination} of {Log} {Flips}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {328--351}, publisher = {mathdoc}, volume = {246}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a23/} }
V. V. Shokurov. Letters of a~Bi-rationalist V: Mld's and Termination of Log Flips. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 328-351. http://geodesic.mathdoc.fr/item/TM_2004_246_a23/
[1] Alexeev V., “Two two-dimensional terminations”, Duke Math. J., 69 (1993), 527–545 | DOI | MR | Zbl
[2] Ambro F., “On minimal log discrepancies”, Math. Res. Lett., 6 (1999), 573–580 | MR | Zbl
[3] Ambro F., “Quasi-log varieties”, Tr. MIAN, 240, 2003, 220–239 | MR | Zbl
[4] Batyrev V. V., “The cone of effective divisors of threefolds”, Proc. Intern. Conf. on Algebra, Pt. 3 (Novosibirsk, 1989), Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 337–352 | MR
[5] Borisov A. A., “Minimal discrepancies of toric singularities”, Manuscr. Math., 92 (1997), 33–45 | DOI | MR | Zbl
[6] Ein L., Mustata M., Yasuda T., Jet schemes, log discrepancies and inverse of adjunction, , 2002 arXiv: /math.AG/0209392
[7] Fujino O., Notes on toric varieties from Mori theoretic viewpoint, , 2001 arXiv:/math.AG/ 0112090 | MR
[8] Fujino O., Termination of $4$-fold canonical flips, , 2003 arXiv: /math.AG/0301154 | MR
[9] Kawamata Y., “The minimal discrepancy of a 3-fold terminal singularity”, Izv. RAN. Ser. mat., 56:1 (1992), 201–203 | MR | Zbl
[10] Kawamata Y., “Subadjunction of log canonical divisors for a subvariety of codimension $2$, I”, Birational algebraic geometry (Baltimore, MD, 1996), Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 79–88 | MR | Zbl
[11] Kollár J., Rational curves on algebraic varieties, Ergeb. Math. und ihrer Grenzgeb. 3. Flg., 32, Springer, Berlin, 1996 | MR
[12] J. Kollár, Flips and abundance for algebraic threefolds, Astérisque, 211, Soc. Math. France, Paris, 1992 | MR
[13] Markushevich D., “Minimal discrepancy for a terminal cDV singularity is 1”, J. Math. Sci. Univ. Tokyo., 3 (1996), 445–456 | MR | Zbl
[14] Reid M., “Canonical 3-folds”, Journeés de géométrie algébrique d'Angers, ed. A. Beauville, Sijthoff and Noordhoff, Alphen, 1980, 273–310 | MR
[15] Reid M., “Decomposition of toric morphisms”, Arithmetic and geometry, v. 2, Progr. Math., 36, eds. M. Artin, J. Tate, Birkhäuser, Boston, 1983, 395–418 | MR
[16] Shokurov V. V., “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. mat., 49:3 (1985), 635–651 | MR
[17] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. mat., 56:1 (1992), 105–201 | MR | Zbl
[18] Shokurov V. V., A.c.c. of m.l.d.: codimension 2 case, Preprint, J. Hopkins Univ., Baltimore, 1992
[19] Shokurov V. V., “3-fold log models”, J. Math. Sci., 81 (1996), 2667–2699 | DOI | MR | Zbl
[20] Shokurov V. V., “Prelimiting flips”, Tr. MIAN, 240, 2003, 82–219 | MR | Zbl
[21] Shokurov V. V., “Letters of a bi-rationalist. IV: Geometry of log flips”, Algebraic geometry, eds. M. C. Beltrametti et al., de Gruyter, Berlin, New York, 2002, 313–328 | MR | Zbl