Letters of a~Bi-rationalist V: Mld's and Termination of Log Flips
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 328-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

Termination of log flips and, more generally, of log quasiflips under the descending chain condition (dcc) of boundary multiplicities follows from two expected properties of the minimal log discrepancy (mld) function on algebraic log varieties: (1) the semicontinuity of mld's on any fixed log variety and (2) the ascending chain condition (acc) of mld's on the log varieties of given dimension with boundary multiplicities under the dcc. This reduces the global statement on termination to two local ones. All known cases of termination follow from this reduction. In particular, this gives the log termination in dimension 3, as well as the special and canonical termination up to dimension 4. To prove the log termination in dimension 4, one only needs the acc in dimension 4 for the mld values in the interval $[0,1]$.
@article{TM_2004_246_a23,
     author = {V. V. Shokurov},
     title = {Letters of {a~Bi-rationalist} {V:} {Mld's} and {Termination} of {Log} {Flips}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {328--351},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a23/}
}
TY  - JOUR
AU  - V. V. Shokurov
TI  - Letters of a~Bi-rationalist V: Mld's and Termination of Log Flips
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 328
EP  - 351
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_246_a23/
LA  - ru
ID  - TM_2004_246_a23
ER  - 
%0 Journal Article
%A V. V. Shokurov
%T Letters of a~Bi-rationalist V: Mld's and Termination of Log Flips
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 328-351
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_246_a23/
%G ru
%F TM_2004_246_a23
V. V. Shokurov. Letters of a~Bi-rationalist V: Mld's and Termination of Log Flips. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 328-351. http://geodesic.mathdoc.fr/item/TM_2004_246_a23/

[1] Alexeev V., “Two two-dimensional terminations”, Duke Math. J., 69 (1993), 527–545 | DOI | MR | Zbl

[2] Ambro F., “On minimal log discrepancies”, Math. Res. Lett., 6 (1999), 573–580 | MR | Zbl

[3] Ambro F., “Quasi-log varieties”, Tr. MIAN, 240, 2003, 220–239 | MR | Zbl

[4] Batyrev V. V., “The cone of effective divisors of threefolds”, Proc. Intern. Conf. on Algebra, Pt. 3 (Novosibirsk, 1989), Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 337–352 | MR

[5] Borisov A. A., “Minimal discrepancies of toric singularities”, Manuscr. Math., 92 (1997), 33–45 | DOI | MR | Zbl

[6] Ein L., Mustata M., Yasuda T., Jet schemes, log discrepancies and inverse of adjunction, , 2002 arXiv: /math.AG/0209392

[7] Fujino O., Notes on toric varieties from Mori theoretic viewpoint, , 2001 arXiv:/math.AG/ 0112090 | MR

[8] Fujino O., Termination of $4$-fold canonical flips, , 2003 arXiv: /math.AG/0301154 | MR

[9] Kawamata Y., “The minimal discrepancy of a 3-fold terminal singularity”, Izv. RAN. Ser. mat., 56:1 (1992), 201–203 | MR | Zbl

[10] Kawamata Y., “Subadjunction of log canonical divisors for a subvariety of codimension $2$, I”, Birational algebraic geometry (Baltimore, MD, 1996), Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997, 79–88 | MR | Zbl

[11] Kollár J., Rational curves on algebraic varieties, Ergeb. Math. und ihrer Grenzgeb. 3. Flg., 32, Springer, Berlin, 1996 | MR

[12] J. Kollár, Flips and abundance for algebraic threefolds, Astérisque, 211, Soc. Math. France, Paris, 1992 | MR

[13] Markushevich D., “Minimal discrepancy for a terminal cDV singularity is 1”, J. Math. Sci. Univ. Tokyo., 3 (1996), 445–456 | MR | Zbl

[14] Reid M., “Canonical 3-folds”, Journeés de géométrie algébrique d'Angers, ed. A. Beauville, Sijthoff and Noordhoff, Alphen, 1980, 273–310 | MR

[15] Reid M., “Decomposition of toric morphisms”, Arithmetic and geometry, v. 2, Progr. Math., 36, eds. M. Artin, J. Tate, Birkhäuser, Boston, 1983, 395–418 | MR

[16] Shokurov V. V., “Teorema o neobraschenii v nul”, Izv. AN SSSR. Ser. mat., 49:3 (1985), 635–651 | MR

[17] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. RAN. Ser. mat., 56:1 (1992), 105–201 | MR | Zbl

[18] Shokurov V. V., A.c.c. of m.l.d.: codimension 2 case, Preprint, J. Hopkins Univ., Baltimore, 1992

[19] Shokurov V. V., “3-fold log models”, J. Math. Sci., 81 (1996), 2667–2699 | DOI | MR | Zbl

[20] Shokurov V. V., “Prelimiting flips”, Tr. MIAN, 240, 2003, 82–219 | MR | Zbl

[21] Shokurov V. V., “Letters of a bi-rationalist. IV: Geometry of log flips”, Algebraic geometry, eds. M. C. Beltrametti et al., de Gruyter, Berlin, New York, 2002, 313–328 | MR | Zbl