Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2004_246_a20, author = {C. Florentino and J. Mour\~ao and J. P. Nunes}, title = {Coherent {State} {Transforms} and {Theta} {Functions}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {297--315}, publisher = {mathdoc}, volume = {246}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a20/} }
TY - JOUR AU - C. Florentino AU - J. Mourão AU - J. P. Nunes TI - Coherent State Transforms and Theta Functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 297 EP - 315 VL - 246 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2004_246_a20/ LA - en ID - TM_2004_246_a20 ER -
C. Florentino; J. Mourão; J. P. Nunes. Coherent State Transforms and Theta Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 297-315. http://geodesic.mathdoc.fr/item/TM_2004_246_a20/
[1] Atiyah M., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London. A., 308 (1983), 523–615 | DOI | MR | Zbl
[2] Axelrod S., Della Pietra S., Witten E., “Geometric quantization of Chern–Simons gauge theory”, J. Diff. Geom., 33 (1991), 787–902 | MR | Zbl
[3] Baez J., “Spin networks in gauge theory”, Adv. Math., 117 (1996), 253–272 | DOI | MR | Zbl
[4] Beauville A., Vector bundles on curves and generalized theta functions: recent results and open problems, , 1994 arXiv: /alg-geom/9404001 | MR
[5] Beauville A., “Conformal blocks, fusion rings and the Verlinde formula”, Proc. Hirzebruch 65 Conf. on Algebraic Geometry, Israel Math. Conf. Proc., 9, Bar-Ilan Univ., Ramat Gan, 1996, 75–96 | MR | Zbl
[6] Beauville A., Laszlo Y., “Conformal blocks and generalized theta functions”, Commun. Math. Phys., 164 (1994), 385–419 | DOI | MR | Zbl
[7] Bernard D., “On the Wess–Zumino–Witten model on the torus”, Nucl. Phys. B., 303 (1988), 77–93 | DOI | MR
[8] Bernard D., “On the Wess–Zumino–Witten models on Riemann surfaces”, Nucl. Phys. B., 309 (1988), 145–174 | DOI | MR
[9] Bratholdt S., Cooper D., “On the topology of the character variety of a free group”, Rend. Ist. Mat. Univ. Trieste, 32:Supp. 1 (2001), 45–53 | MR | Zbl
[10] Drezet J., Narasimhan M. S., “Groupe de Picard des varietés de modules de fibrés semi-stables sur les courbes algébriques”, Invent. Math., 97 (1989), 53–94 | DOI | MR | Zbl
[11] Elitzur S., Moore G., Schwimmer A., Seiberg N., “Remarks on the canonical quantization of the Chern–Simons–Witten theory”, Nucl. Phys. B., 326 (1989), 108–134 | DOI | MR
[12] Faltings G., “Stable $G$-bundles and projective connections”, J. Alg. Geom., 2 (1993), 507–568 | MR | Zbl
[13] Florentino C., “Schottky uniformization and vector bundles over Riemann surfaces”, Manuscr. Math., 105 (2001), 68–83 | DOI | MR
[14] Florentino C., Mourão J., Nunes J. P., “Coherent state transforms and abelian varieties”, J. Funct. Anal., 192 (2002), 410–424 | DOI | MR | Zbl
[15] Florentino C., Mourão J., Nunes J. P., “Coherent state transforms and vector bundles on elliptic curves”, J. Funct. Anal., 204 (2003), 355–398 | DOI | MR | Zbl
[16] Florentino C., Mourão J., Nunes J. P., Tyurin A., Analytical aspects on non-abelian theta functions, In preparation
[17] Fogarty J., Kirwan F., Mumford D., Geometric invariant theory, 3rd ed., Springer, New York, 1994 | MR | Zbl
[18] Friedman R., Morgan J., Holomorphic principal bundles over elliptic curves, , 1998 arXiv: /math.AG/9811130 | MR
[19] Friedman R., Morgan J., Witten E., “Principal G-bundles over elliptic curves”, Math. Res. Lett., 5 (1998), 97–118 | MR | Zbl
[20] Gawȩdzki K., “Lectures on conformal field theory”, Quantum fields and strings: A course for mathematicians, Amer. Math. Soc., Providence, RI, 1999, 727–805 | MR | Zbl
[21] Gawȩdzki K., Conformal field theory: a case study, , 1999 arXiv: /hep-th/9904145
[22] Hall B. C., “The Segal–Bargmann coherent state transform for compact Lie groups”, J. Funct. Anal., 122 (1994), 103–151 | DOI | MR | Zbl
[23] Hall B. C., “Holomorphic methods in mathematical physics”, Contemp. Math., 260 (2000), 1–59 | MR | Zbl
[24] Hall B. C., “Quantum mechanics in phase space”, Contemp. Math., 214 (1998), 47–62 | MR | Zbl
[25] Hall B. C., Geometric quantization and the generalized Segal–Bargmann transform for Lie groups of compact type, , 2000 arXiv: /quant-phys/0012105 | MR
[26] Hall B. C., “Harmonic analysis with respect to the heat kernel measure”, Bull. Amer. Math. Soc., 38 (2001), 43–78 | DOI | MR | Zbl
[27] Hitchin N., “Flat connections and geometric quantization”, Commun. Math. Phys., 131 (1990), 347–380 | DOI | MR | Zbl
[28] Hochschild G., The structure of Lie groups, Holden-Day, San Francisco, London, Amsterdam, 1965 | MR | Zbl
[29] Jeffrey L., Weitsman J., “Bohr–Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula”, Commun. Math. Phys., 150 (1992), 593–630 | DOI | MR | Zbl
[30] Kac V., Infinite dimensional Lie algebras. 3rd ed., Cambridge Univ. Press, Cambridge, 1990 | MR
[31] Kempf G., Complex abelian varieties and theta functions, Springer, Berlin, 1991 | MR | Zbl
[32] Knizhnik V., Zamolodchikov A., “Current algebras and the Wess–Zumino–Witten model in two dimensions”, Nucl. Phys. B., 247 (1984), 83–103 | DOI | MR | Zbl
[33] Looijenga E., “Root systems and elliptic curves”, Invent. Math., 38 (1976), 17–32 | DOI | MR | Zbl
[34] Lange H., Birkenhake C., Complex abelian varieties, Springer, Berlin, 1992 | MR
[35] Narasimhan M. S., Geometric invariant theory and moduli problems, Unpubl. Lect. Notes
[36] Narasimhan M. S., Seshadri C. S., “Stable and unitary vector bundles on a compact Riemann surface”, Ann. Math. Ser. 2, 82 (1965), 540–567 | DOI | MR | Zbl
[37] Narasimhan M. S., Ramanan S., “Moduli of vector bundles on a compact Riemann surface”, Ann. Math. Ser. 2, 89 (1969), 14–51 | DOI | MR | Zbl
[38] Sniaticky J., Geometric quantization and quantum mechanics, Springer, Berlin, 1987
[39] Sorger C., “La formule de Verlinde”, Sem. Bourbaki 1994/95, Astérisque, 237, Soc. Math. France, Paris, 1996, 87–114, Exp. 794 | MR | Zbl
[40] Thiemann T., “The inverse loop transform”, J. Math. Phys., 39 (1998), 1236–1248 | DOI | MR | Zbl
[41] Tyurin A., Quantization, classical and quantum field theory and theta functions, CRM Monogr. Ser., Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[42] Tyurin A., Quantization and theta-functions, , 1999 arXiv: /math.AG/9904046 | MR
[43] Tyurin A. N., “O bazisakh Bora–Zommerfelda”, Izv. RAN. Ser. mat., 64:5 (2000), 163–196 | MR | Zbl
[44] Tyurin A., Complexification of Bohr–Sommerfeld Conditions, , 1999 arXiv: /math.AG/ 9909094
[45] Verlinde E., “Fusion rules and modular transformations in 2D conformal field theory”, Nucl. Phys. B., 300 (1988), 360–376 | DOI | MR | Zbl
[46] Weitsman J., “Quantization via real polarization of the moduli space of flat connections and Chern–Simons gauge theory in genus one”, Commun. Math. Phys., 137 (1991), 175–190 | DOI | MR | Zbl
[47] Witten E., “Quantum field theory and the Jones polynomial”, Commun. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl