Floer Homology, Nielsen Theory, and Symplectic Zeta Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 283-296
Voir la notice de l'article provenant de la source Math-Net.Ru
A connection between symplectic Floer homology for surfaces and the Nielsen fixed point theory is described. New zeta functions and an asymptotic invariant of symplectic origin are defined. It is shown that special values of symplectic zeta functions are Reidemeister torsions.
@article{TM_2004_246_a19,
author = {A. L. Fel'shtyn},
title = {Floer {Homology,} {Nielsen} {Theory,} and {Symplectic} {Zeta} {Functions}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {283--296},
publisher = {mathdoc},
volume = {246},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a19/}
}
A. L. Fel'shtyn. Floer Homology, Nielsen Theory, and Symplectic Zeta Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 283-296. http://geodesic.mathdoc.fr/item/TM_2004_246_a19/