Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2004_246_a19, author = {A. L. Fel'shtyn}, title = {Floer {Homology,} {Nielsen} {Theory,} and {Symplectic} {Zeta} {Functions}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {283--296}, publisher = {mathdoc}, volume = {246}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a19/} }
A. L. Fel'shtyn. Floer Homology, Nielsen Theory, and Symplectic Zeta Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 283-296. http://geodesic.mathdoc.fr/item/TM_2004_246_a19/
[1] Brooks R., Brown R. F., Pak J., Taylor D. H., “Nielsen numbers of maps of tori”, Proc. Amer. Math. Soc., 52 (1975), 398–400 | DOI | MR | Zbl
[2] Dostoglou S., Salamon D. A., “Self-dual instantons and holomorphic curves”, Ann. Math., 139 (1994), 581–640 | DOI | MR | Zbl
[3] Earle C. J., Eells J., “The diffeomorphism group of a compact Riemann surface”, Bull. Amer. Math. Soc., 73 (1967), 557–559 | DOI | MR
[4] Fathi A., Laudenbach F., Poénaru V., Travaux de Thurston sur les surfaces, Astérisque, 66–67, Soc. Math. France, Paris, 1979 | MR
[5] Fel'shtyn A. L., Dynamical zeta functions, Nielsen theory and Reidemeister torsion, Mem. AMS, 147, no. 699, Amer. Math. Soc., Providence, RI, 2000, 146 pp. | MR
[6] Fel'shtyn A. L., “Dynamical zeta functions and asymptotic expansions in Nielsen theory”, Dynamical, spectral, and arithmetic zeta functions, Contemp. Math., 290, Amer. Math. Soc., Providence, RI, 2002, 67–79 | MR
[7] Floer A., “Morse theory for Lagrangian intersections”, J. Diff. Geom., 28 (1988), 513–547 | MR | Zbl
[8] Floer A., “Symplectic fixed points and holomorphic spheres”, Commun. Math. Phys., 120:2 (1989), 575–611 | DOI | MR | Zbl
[9] Fried D., “Lefschetz formulas for flows”, The Lefschetz centennial conference, Contemp. Math., 58, Amer. Math. Soc., Providence, RI, 1987, 19–69 | MR
[10] Gautschi R., Floer homology of algebraically finite mapping classes, , 2002 arXiv: /math.SG/0204032 | MR
[11] Gerber M., Katok A., “Smooth models of Thurston's pseudo-Anosov maps”, Ann. Sci. École Norm. Supér, 15 (1982), 173–204 | MR | Zbl
[12] Gromov M., “Pseudoholomorphic curves in symplectic manifolds”, Invent. Math., 82 (1985), 307–347 | DOI | MR | Zbl
[13] Jiang B., “Fixed point classes from a differentiable viewpoint”, Fixed point theory, Lect. Notes Math., 886, Springer, Berlin, 1981, 163–170 | MR
[14] Jiang B., “Estimation of the number of periodic orbits”, Pacif. J. Math., 172 (1996), 151–185 | MR | Zbl
[15] Jiang B., Guo J., “Fixed points of surface diffeomorphisms”, Pacif. J. Math., 160 (1993), 67–89 | MR | Zbl
[16] Ivanov N. V., “Chisla Nilsena otobrazhenii poverkhnosti”, Zap. nauch. sem. LOMI, 122, 1982, 56–65 | MR | Zbl
[17] Ivanov N. V., “Entropiya i chisla Nilsena”, DAN SSSR, 265:2 (1982), 284–287 | MR | Zbl
[18] Manning A., “Axiom $\mathrm{A}$ diffeomorphisms have rational zeta function”, Bull. London Math. Soc., 3 (1971), 215–220 | DOI | MR | Zbl
[19] McDuff D., Salamon D. A., Introduction to symplectic topology, Oxford Math. Monogr., Clarendon Press, Oxford, 1998 | MR
[20] Moser J., “On the volume elements on a manifold”, Trans. Amer. Math. Soc., 120 (1965), 286–294 | DOI | MR | Zbl
[21] Poźniak M., “Floer homology, Novikov rings and clean intersections”, Northern California symplectic geometry seminar, AMS Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI, 1999, 119–181 | MR | Zbl
[22] Seidel P., Symplectic Floer homology and the mapping class group, , 2001 arXiv: /math.SG/0010301 | MR
[23] Seidel P., Braids and symplectic four-manifolds with abelian fundamental group, , 2002 arXiv: /math.SG/0202135 | MR
[24] Thurston W. P., “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc., 19:2 (1988), 417–431 | DOI | MR | Zbl