Triangulated Categories of Singularities and D-Branes in Landau--Ginzburg Models
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 240-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

Triangulated categories of singularities are defined and their main properties are investigated. A connection between categories of such type and categories of D-brane of B type in Landau–Ginzburg models is established. This connection is interesting by its applications to mirror symmetry.
@article{TM_2004_246_a16,
     author = {D. O. Orlov},
     title = {Triangulated {Categories} of {Singularities} and {D-Branes} in {Landau--Ginzburg} {Models}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {240--262},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a16/}
}
TY  - JOUR
AU  - D. O. Orlov
TI  - Triangulated Categories of Singularities and D-Branes in Landau--Ginzburg Models
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 240
EP  - 262
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_246_a16/
LA  - ru
ID  - TM_2004_246_a16
ER  - 
%0 Journal Article
%A D. O. Orlov
%T Triangulated Categories of Singularities and D-Branes in Landau--Ginzburg Models
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 240-262
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_246_a16/
%G ru
%F TM_2004_246_a16
D. O. Orlov. Triangulated Categories of Singularities and D-Branes in Landau--Ginzburg Models. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 240-262. http://geodesic.mathdoc.fr/item/TM_2004_246_a16/

[1] Auslander M., “Rational singularities and almost split sequences”, Trans. Amer. Math. Soc., 293 (1986), 511–532 | DOI | MR

[2] Auslander M., Reiten I., “Almost split sequences for rational double points”, Trans. Amer. Math. Soc., 302 (1987), 87–99 | DOI | MR

[3] Berthelot P., Grothendieck A., Illusie L., Théorie des intersections et théoreme de Riemann–Roch, Lect. Notes Math., 225, Springer, Berlin, 1971 | MR | Zbl

[4] Bondal A., Orlov D., Semiorthogonal decomposition for algebraic varieties, Preprint 95/15, MPIM, Bonn, 1995; arXiv: /math.AG/9506012

[5] Buchweitz R.-O., “The comparison theorem”, Appendix to: Buchweitz R.-O., Eisenbud D., Herzog J., Cohen–Macaulay modules on quadrics, Lect. Notes Math., 1273, Springer, Berlin, 1987, 96–116 | MR

[6] Dietrich E., Wiedemann A., “The Auslander–Reiten quiver of a simple curve singularity”, Trans. Amer. Math. Soc., 294 (1986), 455–475 | DOI | MR

[7] Douglas M. R., “D-branes, categories and $\mathcal{N}=1$ supersymmetry”, J. Math. Phys., 42 (2001), 2818–2843 ; arXiv: /hep-th/0011017 | DOI | MR | Zbl

[8] Eisenbud D., “Homological algebra on a complete intersection, with an application to group representations”, Trans. Amer. Math. Soc., 260 (1980), 35–64 | DOI | MR | Zbl

[9] Gabriel P., Tsisman M., Kategorii chastnykh i teoriya gomotopii, Mir, M., 1971 | MR | Zbl

[10] Gelfand S. I., Manin Yu. I., Metody gomologicheskoi algebry. T. 1: Vvedenie v teoriyu kogomologii i proizvodnykh kategorii, Nauka, M., 1988 | MR

[11] Happel D., “On the derived categories of finite-dimensional algebra”, Comment. Math. Helv., 62 (1987), 339–389 | DOI | MR | Zbl

[12] Hartshorne R., Algebraic geometry, Grad. Texts Math., 52, Springer, New York, Heidelberg, 1977 | MR | Zbl

[13] Hartshorne R., Residues and duality, Lect. Notes Math., 20, Springer, Berlin, 1966 | MR | Zbl

[14] Hori K., Iqbal A., Vafa C., D-branes and mirror symmetry, , 2000 arXiv: /hep-th/0005247

[15] Hori K., Vafa C., Mirror symmetry, , 2000 arXiv: /hep-th/0002222

[16] Kapustin A., Li Yi., D-branes in Landau–Ginzburg models and algebraic geometry, , 2002 arXiv: /hep-th/0210296 | MR

[17] Kashivara M., Shapira P., Puchki na mnogoobraziyakh, Mir, M., 1994

[18] Keller B., “Derived categories and their uses”, Handbook of algebra, v. 1, ed. M. Hazewinkel, North-Holland, Amsterdam, 1996, 671–701 | MR | Zbl

[19] Keller B., “Chain complexes and stable categories”, Manuscr. Math., 67 (1990), 379–417 | DOI | MR | Zbl

[20] Knörrer H., “Cohen–Macaulay modules on hypersurface singularities, I”, Invent. Math., 88 (1987), 153–164 | DOI | MR | Zbl

[21] Kontsevich M., “Homological algebra of mirror symmetry”, Proc. Intern. Congr. Math. (Zürich, 1994), Birkhäuser, Basel, 1995, 120–139 | MR | Zbl

[22] Orlov D. O., “Proektivnye rassloeniya, monoidalnye preobrazovaniya i proizvodnye kategorii kogerentnykh puchkov”, Izv. RAN. Ser. mat., 56:4 (1992), 852–862 | MR | Zbl

[23] Quillen D., “Higher algebraic K-theory, I”, Algebraic K-theory I, Proc. Conf. Battelle Inst. (1972), Lect. Notes Math., 341, Springer, Berlin, 1973, 85–147 | MR

[24] Seidel P., Vanishing cycles and mutations, , 2000 arXiv: /math.SG/0007115 | MR

[25] Thomason R. W., Trobaugh T., “Higher algebraic K-theory of schemes and of derived categories”, The Grothendieck festschrift, 3, Birkhäuser, Boston, Basel, Berlin, 1990, 247–436 | MR

[26] Verdier J. L., “Categories derivées”, Séminaire de géométrie algébrique du Bois-Marie SGA 4 $\frac12$, Lect. Notes Math., 569, Springer, Berlin, 1977, 262–311 | MR