Georg Cantor and His Heritage
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 208-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cantor's ideas on the background of the development of mathematics (rather than foundations of mathematics) in the XX century are discussed freely, by drawing analogies from computer science, physics, and art studies.
@article{TM_2004_246_a14,
     author = {Yu. I. Manin},
     title = {Georg {Cantor} and {His} {Heritage}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {208--216},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a14/}
}
TY  - JOUR
AU  - Yu. I. Manin
TI  - Georg Cantor and His Heritage
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 208
EP  - 216
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_246_a14/
LA  - en
ID  - TM_2004_246_a14
ER  - 
%0 Journal Article
%A Yu. I. Manin
%T Georg Cantor and His Heritage
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 208-216
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_246_a14/
%G en
%F TM_2004_246_a14
Yu. I. Manin. Georg Cantor and His Heritage. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 208-216. http://geodesic.mathdoc.fr/item/TM_2004_246_a14/

[1] Bloom H., The Western Canon, Riverhead Books, New York, 1994

[2] Cantor G., “Beiträge zur Begründung der transfiniten Mengenlehre”, Math. Ann., 46 (1895), 481–512 ; ibid 49 (1897), 207–246 | DOI | DOI | MR | Zbl

[3] Dauben J. W., Georg Cantor: his mathematics and philosophy of the infinite, Princeton Univ. Press, Princeton, NJ, 1990 | MR

[4] Dehaene S., Spelke E., Pinet P., Stanescu R., Tsivkin S., “Sources of mathematical thinking: behavioral and brain-imaging evidence”, Science, 284 (1999), 970–974 | DOI

[5] Freiling C., “Axioms of symmetry: throwing darts at the real line”, J. Symb. Logic, 51 (1986), 190–200 | DOI | MR | Zbl

[6] Garey M., Johnson D., Computers and intractability: a guide to the theory of $\mathrm{NP}$-completeness, W. H. Freeman and Co., San-Francisco, 1979 | MR | Zbl

[7] Lyotard J.-F., The postmodern condition: a report on knowledge, Univ. Minneapolis Press, Minneapolis, 1984

[8] Manin Yu., “Classical computing, quantum computing, and Shor's factoring algorithm”, Astérisque, 266, 2000, 375–404 | MR | Zbl

[9] Mashaal M., Bourbaki, Les génies de la science, 2, Pour la science, Paris, 2000

[10] Mumford D., “The dawning of the age of stochasticity”, Mathematics: Frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, 197–218 | MR | Zbl

[11] Purkert W., Ilgauds H. J., Georg Cantor, 1845–1918, Birkhäuser, Basel, Boston, Stuttgart, 1987 | MR | Zbl

[12] Tasić V., Mathematics and the roots of postmodern thought, Oxford Univ. Press, New York, 2001 | MR | Zbl