Derived Categories of Cubic and $V_{14}$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 183-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that, after a certain natural flop, the projectivization of the exceptional rank-$2$ vector bundle on an arbitrary smooth $V_{14}$ Fano threefold turns into the projectivization of an instanton vector bundle on a smooth cubic threefold. Conversely, starting from a smooth cubic threefold with an instanton vector bundle of charge $2$ on it, we reconstruct a $V_{14}$ threefold. Based on the geometric properties of the above correspondence, we prove that the orthogonals to the exceptional pairs in the bounded derived categories of coherent sheaves on a smooth $V_{14}$ threefold and on the corresponding cubic threefold are equivalent as triangulated categories.
@article{TM_2004_246_a13,
     author = {A. G. Kuznetsov},
     title = {Derived {Categories} of {Cubic} and $V_{14}$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {183--207},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a13/}
}
TY  - JOUR
AU  - A. G. Kuznetsov
TI  - Derived Categories of Cubic and $V_{14}$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 183
EP  - 207
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_246_a13/
LA  - ru
ID  - TM_2004_246_a13
ER  - 
%0 Journal Article
%A A. G. Kuznetsov
%T Derived Categories of Cubic and $V_{14}$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 183-207
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_246_a13/
%G ru
%F TM_2004_246_a13
A. G. Kuznetsov. Derived Categories of Cubic and $V_{14}$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 183-207. http://geodesic.mathdoc.fr/item/TM_2004_246_a13/

[1] Beauville A., “Vector bundles on the cubic threefold”, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000), Contemp. Math., 312, Amer. Math. Soc., Providence, RI, 2002, 71–86 | MR | Zbl

[2] Bondal A. I., “Predstavleniya assotsiativnykh algebr i kogerentnye puchki”, Izv. AN SSSR. Ser. mat., 53:1 (1989), 25–44 | MR

[3] Bondal A. I., Kapranov M. M., “Predstavimye funktory, funktory Serra i perestroiki”, Izv. AN SSSR. Ser. mat., 53:6 (1989), 1183–1205 | MR

[4] Bondal A., Orlov D., Semiorthogonal decompositions for algebraic varieties, Preprint MPI 1995-15, Max-Planck-Inst., Bonn, 1995; arXiv: /alg-geom/9506012

[5] Bridgeland T., “Flops and derived categories”, Invent. Math., 147:3 (2002), 613–632 | DOI | MR | Zbl

[6] Bridgeland T., Stability conditions on triangulated categories, , 2002 arXiv: /math.AG/0212237 | MR

[7] Druel S., “Espace des modules des faisceaux de rang $2$ semi-stables de classes de Chern $c_{1}=0$, $c_{2}=2$ et $c_{3}=0$ sur la cubique de $\mathbb{P}^4$”, Intern. Math. Res. Not., 2000, no. 19, 985–1004 | DOI | MR | Zbl

[8] Clemens C. H., Griffiths P. A., “The intermediate Jacobian of the cubic threefold”, Ann. Math., 95 (1972), 281–356 | DOI | MR | Zbl

[9] Fano G., “Sulle sezioni spaziali della varietà grassmanniana delle rette dello spazio a cinque dimensioni”, Rend. Accad. Lincei Roma, 11 (1930), 329–335 | Zbl

[10] Gelfand S. I., Manin Yu. I., “Gomologicheskaya algebra”, Algebra – 5, Itogi nauki i tekhniki. Sovr. probl. mat. Fund. napr., 38, VINITI, M., 1989, 5–238 | MR

[11] Iliev A., Markushevich D., “The Abel–Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14”, Doc. Math., 5 (2000), 23–47 | MR | Zbl

[12] Iskovskikh V. A., “Biratsionalnye avtomorfizmy trekhmernykh algebraicheskikh mnogoobrazii”, Sovremennye problemy matematiki, 12, VINITI, M., 1978, 159–236 | MR

[13] Iskovskikh V. A., “Trekhmernye mnogoobraziya Fano, I, II”, Izv. AN SSSR. Ser. mat., 41:3 (1977), 512–562 ; ibid., 42:3 (1978), 506–549 | MR | MR | Zbl

[14] Iskovskikh V. A., Prokhorov Yu. G., Algebraic geometry V: Fano varieties, Encycl. Math. Sci., 47, Springer, Berlin, 1999 | MR | Zbl

[15] Kuznetsov A., Fano threefolds $V_{22}$, Preprint MPI 1997-24, Max-Planck-Inst., Bonn, 1997

[16] Markushevich D., Tikhomirov A. S., “The Abel–Jacobi map of a moduli component of vector bundles on the cubic threefold”, J. Alg. Geom., 10:1 (2001), 37–62 | MR | Zbl

[17] Mukai S., “Fano 3-folds”, Complex projective geometry (Trieste, 1989/Bergen), LMS Lect. Notes Ser., 179, Cambridge Univ. Press, Cambridge, 1989, 255–263 | MR

[18] Orlov D. O., “Proektivnye rassloeniya, monoidalnye preobrazovaniya i proizvodnye kategorii kogerentnykh puchkov”, Izv. RAN. Ser. mat., 56:4 (1992), 852–862 | MR | Zbl

[19] Okonek K., Shneider M., Shpindler Kh., Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Per. s angl., Novoe v zarubezhnoi nauke, no. 36, Mir, M., 1984 | MR | Zbl

[20] Swan R., “Hochschild cohomology of quasiprojective schemes”, J. Pure and Appl. Algebra, 110:1 (1996), 57–80 | DOI | MR | Zbl

[21] Takeuchi K., “Some birational maps of Fano 3-folds”, Compos. Math., 71 (1989), 265–283 | MR | Zbl

[22] Tregub S. L., “Konstruktsiya biratsionalnogo izomorfizma trekhmernoi kubiki i mnogoobraziya Fano pervogo roda s $g=8$, svyazannaya s normalnoi ratsionalnoi krivoi stepeni 4”, Vestn. MGU. Matematika. Mekhanika, 1985, no. 6, 99–101 | MR | Zbl

[23] Tyurin A. N., “Geometriya poverkhnosti Fano neosoboi kubiki $F\subset\mathbb{P}^4$ i teoremy Torelli dlya poverkhnostei Fano i kubik”, Izv. AN SSSR. Ser. mat., 35:3 (1971), 498–529 | Zbl

[24] Tyurin A. N., “O peresechenii kvadrik”, UMN, 30:6 (1975), 51–99 | MR | Zbl

[25] Verdier J. L., “Categories derivées”, Séminaire de géométrie algébrique du Bois-Marie SGA 4 $\frac12$, Lect. Notes Math., 569, Springer, Berlin etc., 1977, 262–311 | MR