An Algebraic Curve $\Sigma\subseteq\mathbb{CP}^2$ with Interesting Topology
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 158-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main point of this paper is to suggest that plane curves with cusps, nodes, and tacnodes only could still have complicated fundamental groups of their complements. After describing such a curve, we compare our results with the results of Allcock, Carlson, and Toledo from the perspective of homological mirror symmetry. We connect some classical ideas of Zariski with some modern ideas emphasizing unity of mathematics—a leading line in Tyurin's work.
@article{TM_2004_246_a11,
     author = {L. Katzarkov and N. Nirschl},
     title = {An {Algebraic} {Curve} $\Sigma\subseteq\mathbb{CP}^2$ with {Interesting} {Topology}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {158--180},
     publisher = {mathdoc},
     volume = {246},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a11/}
}
TY  - JOUR
AU  - L. Katzarkov
AU  - N. Nirschl
TI  - An Algebraic Curve $\Sigma\subseteq\mathbb{CP}^2$ with Interesting Topology
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 158
EP  - 180
VL  - 246
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_246_a11/
LA  - en
ID  - TM_2004_246_a11
ER  - 
%0 Journal Article
%A L. Katzarkov
%A N. Nirschl
%T An Algebraic Curve $\Sigma\subseteq\mathbb{CP}^2$ with Interesting Topology
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 158-180
%V 246
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_246_a11/
%G en
%F TM_2004_246_a11
L. Katzarkov; N. Nirschl. An Algebraic Curve $\Sigma\subseteq\mathbb{CP}^2$ with Interesting Topology. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 158-180. http://geodesic.mathdoc.fr/item/TM_2004_246_a11/

[1] Allcock D., Carlson J., Toledo D., “The complex hyperbolic geometry of the moduli space of cubic surfaces”, J. Alg. Geom., 11:4 (2002), 659–724 | MR | Zbl

[2] Auroux D., Donaldson S. K., Katzarkov L., Yotov M., Fundamental groups of complements of plane curves and symplectic invariants, Preprint, 2002 ; Topology (to appear) | MR

[3] Auroux D., Katzarkov L., Orlov D., HMS for del Pezzo surfaces, in preparation

[4] Beauville A., Complex algebraic surfaces, LMS Lect. Note Ser., 68, Cambridge Univ. Press, Cambridge, 1983 | MR | Zbl

[5] Coolidge J. L., A treatise on algebraic plane curves, Dover Publ., New York, 1959 | MR | Zbl

[6] Cox D., Little J., O'Shea D., Ideals, varieties and algorithms: An introduction to computational algebraic geometry and commutative algebra, 2nd ed., Springer, New York, 1996

[7] Carlson J., Toledo D., “Discriminant complements and kernels of monodromy representations”, Duke Math. J., 97:3 (1999), 621–648 | DOI | MR | Zbl

[8] Dolgachev I., Libgober A., “On the fundamental group of the complement to a discriminant variety”, Algebraic geometry, Proc. Midwest Conf. Univ. Illinois (Chicago Circle, May 2–3, 1980), Lect. Notes Math., 862, Springer, Berlin, 1981, 1–25 | MR

[9] Gromov M., “Asymptotic invariants of infinite groups”, Geometric group theory (Sussex, 1991), LMS Lect. Note Ser., 2, Cambridge Univ. Press, Cambridge, 1993, 1–295 | MR

[10] Hori K., Vafa C., Mirror symmetry, , 2000 arXiv: /hep-th/002002

[11] Katzarkov L., Pantev T., An example of nonresidually finite $\pi_1(\mathbb{P}^2/C)$, Preprint, UC Irvine, 1996

[12] Looijenga E., Compactifications defined by arrangements. I: The ball quotient case, , 2001 arXiv: /math.AG/0106228 | MR

[13] Looijenga E., Compactifications defined by arrangements. II: Locally symmetric varieties of type IV, , 2002 arXiv: /math.AG/0201218 | MR

[14] Hamm M. A., Le D. T., “Un théorème de Zariski du type de Lefschetz”, Ann. Sci. École Norm. Supér. Ser. 4, 6 (1973), 317–355 | MR | Zbl

[15] Moishezon B., “The arithmetic of braids and a statement of Chisini”, Geometric topology (Haifa, 1992), Amer. Math. Soc., Providence, RI, 1994, 151–175 | MR | Zbl

[16] Nirschl N., http://www.math.ucr.edu/~nirschl

[17] Orlov D., Triangulated categories of singularities and D-branes in Landau–Ginzburg models, , 2003; D. O. Orlov, “Triangulated Categories of Singularities and D-Branes in Landau–Ginzburg Models”, Proc. Steklov Inst. Math., 246 (2004), 227–248 arXiv: /math.AG/0308173 | MR | Zbl

[18] Seidel P., Homological mirror symmetry for the quartic surface, , 2003 arXiv: /math.SG/0310414

[19] Zariski O., Algebraic surfaces, Springer, Berlin, 1971 | MR | Zbl

[20] Zariski O., “A theorem on the Poincare group of an algebraic hypersurface”, Math. Ann., 38 (1937), 131–141 | DOI | MR | Zbl

[21] Zelmanov E., “On the restricted Burnside problem”, Fields Medalists' lectures, World Sci. Ser. 20th Century Math., 5, World Sci., River Edge, NJ, 1997, 623–632 | MR