Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2004_246_a11, author = {L. Katzarkov and N. Nirschl}, title = {An {Algebraic} {Curve} $\Sigma\subseteq\mathbb{CP}^2$ with {Interesting} {Topology}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {158--180}, publisher = {mathdoc}, volume = {246}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2004_246_a11/} }
TY - JOUR AU - L. Katzarkov AU - N. Nirschl TI - An Algebraic Curve $\Sigma\subseteq\mathbb{CP}^2$ with Interesting Topology JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 158 EP - 180 VL - 246 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2004_246_a11/ LA - en ID - TM_2004_246_a11 ER -
L. Katzarkov; N. Nirschl. An Algebraic Curve $\Sigma\subseteq\mathbb{CP}^2$ with Interesting Topology. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic geometry: Methods, relations, and applications, Tome 246 (2004), pp. 158-180. http://geodesic.mathdoc.fr/item/TM_2004_246_a11/
[1] Allcock D., Carlson J., Toledo D., “The complex hyperbolic geometry of the moduli space of cubic surfaces”, J. Alg. Geom., 11:4 (2002), 659–724 | MR | Zbl
[2] Auroux D., Donaldson S. K., Katzarkov L., Yotov M., Fundamental groups of complements of plane curves and symplectic invariants, Preprint, 2002 ; Topology (to appear) | MR
[3] Auroux D., Katzarkov L., Orlov D., HMS for del Pezzo surfaces, in preparation
[4] Beauville A., Complex algebraic surfaces, LMS Lect. Note Ser., 68, Cambridge Univ. Press, Cambridge, 1983 | MR | Zbl
[5] Coolidge J. L., A treatise on algebraic plane curves, Dover Publ., New York, 1959 | MR | Zbl
[6] Cox D., Little J., O'Shea D., Ideals, varieties and algorithms: An introduction to computational algebraic geometry and commutative algebra, 2nd ed., Springer, New York, 1996
[7] Carlson J., Toledo D., “Discriminant complements and kernels of monodromy representations”, Duke Math. J., 97:3 (1999), 621–648 | DOI | MR | Zbl
[8] Dolgachev I., Libgober A., “On the fundamental group of the complement to a discriminant variety”, Algebraic geometry, Proc. Midwest Conf. Univ. Illinois (Chicago Circle, May 2–3, 1980), Lect. Notes Math., 862, Springer, Berlin, 1981, 1–25 | MR
[9] Gromov M., “Asymptotic invariants of infinite groups”, Geometric group theory (Sussex, 1991), LMS Lect. Note Ser., 2, Cambridge Univ. Press, Cambridge, 1993, 1–295 | MR
[10] Hori K., Vafa C., Mirror symmetry, , 2000 arXiv: /hep-th/002002
[11] Katzarkov L., Pantev T., An example of nonresidually finite $\pi_1(\mathbb{P}^2/C)$, Preprint, UC Irvine, 1996
[12] Looijenga E., Compactifications defined by arrangements. I: The ball quotient case, , 2001 arXiv: /math.AG/0106228 | MR
[13] Looijenga E., Compactifications defined by arrangements. II: Locally symmetric varieties of type IV, , 2002 arXiv: /math.AG/0201218 | MR
[14] Hamm M. A., Le D. T., “Un théorème de Zariski du type de Lefschetz”, Ann. Sci. École Norm. Supér. Ser. 4, 6 (1973), 317–355 | MR | Zbl
[15] Moishezon B., “The arithmetic of braids and a statement of Chisini”, Geometric topology (Haifa, 1992), Amer. Math. Soc., Providence, RI, 1994, 151–175 | MR | Zbl
[16] Nirschl N., http://www.math.ucr.edu/~nirschl
[17] Orlov D., Triangulated categories of singularities and D-branes in Landau–Ginzburg models, , 2003; D. O. Orlov, “Triangulated Categories of Singularities and D-Branes in Landau–Ginzburg Models”, Proc. Steklov Inst. Math., 246 (2004), 227–248 arXiv: /math.AG/0308173 | MR | Zbl
[18] Seidel P., Homological mirror symmetry for the quartic surface, , 2003 arXiv: /math.SG/0310414
[19] Zariski O., Algebraic surfaces, Springer, Berlin, 1971 | MR | Zbl
[20] Zariski O., “A theorem on the Poincare group of an algebraic hypersurface”, Math. Ann., 38 (1937), 131–141 | DOI | MR | Zbl
[21] Zelmanov E., “On the restricted Burnside problem”, Fields Medalists' lectures, World Sci. Ser. 20th Century Math., 5, World Sci., River Edge, NJ, 1997, 623–632 | MR