Noncommutative $p$-Tachyon
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 91-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

Following a brief review of the tachyon field of $p$-adic string theory, we consider a noncommutative deformation of this field theory. This is done by replacing ordinary products with noncommutative products in the exact effective action of this field. Solitonic lumps corresponding to D-branes are obtained for all values of the noncommutativity parameter $\theta$.
@article{TM_2004_245_a9,
     author = {D. Ghoshal},
     title = {Noncommutative $p${-Tachyon}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {91--98},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a9/}
}
TY  - JOUR
AU  - D. Ghoshal
TI  - Noncommutative $p$-Tachyon
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 91
EP  - 98
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a9/
LA  - en
ID  - TM_2004_245_a9
ER  - 
%0 Journal Article
%A D. Ghoshal
%T Noncommutative $p$-Tachyon
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 91-98
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a9/
%G en
%F TM_2004_245_a9
D. Ghoshal. Noncommutative $p$-Tachyon. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 91-98. http://geodesic.mathdoc.fr/item/TM_2004_245_a9/

[1] Sen A., “Descent relations among bosonic D-branes”, Intern. J. Mod. Phys. A., 14 (1999), 4061–4078 ; arXiv: /hep-th/9902105 | DOI | MR

[2] Sen A., “Stable non-BPS bound states of BPS D-branes”, J. High Energy Phys., 1998, no. 8, Paper 10 ; arXiv: /hep-th/9805019 | MR

[3] Sen A., “Tachyon condensation on the brane antibrane system”, J. High Energy Phys., 1998, no. 8, Paper 12 ; arXiv: /hep-th/9805170 | MR

[4] Taylor W., Zwiebach B., D-branes, tachyons, and string field theory, , 2003 arXiv: /hep-th/0311017 | MR

[5] Freund P. G. O., Olson M., “Non-archimedean strings”, Phys. Lett. B., 199 (1987), 186–190 | DOI | MR

[6] Freund P. G. O., Witten E., “Adelic string amplitudes”, Phys. Lett. B., 199 (1987), 191–194 | DOI | MR

[7] Brekke L., Freund P. G. O., Olson M., Witten E., “Non-archimedean string dynamics”, Nucl. Phys. B., 302 (1988), 365–402 | DOI | MR

[8] Frampton P. H., Okada Y., “$p$-Adic string $N$-point function”, Phys. Rev. Lett., 60 (1988), 484–486 | DOI | MR

[9] Frampton P. H., Okada Y., “Effective scalar field theory of $p$-adic string”, Phys. Rev. D., 37 (1988), 3077–3079 | DOI | MR

[10] Brekke L., Freund P. G. O., “$p$-Adic numbers in physics”, Phys. Rept., 233 (1993), 1–66 | DOI | MR

[11] Ghoshal D., Sen A., “Tachyon condensation and brane descent relations in $p$-adic string theory”, Nucl. Phys. B., 584 (2000), 300–312 ; arXiv: /hep-th/0003278 | DOI | MR | Zbl

[12] Volovich I. V., “$p$-Adic string”, Class. and Quant. Grav., 4 (1987), L83–L87 | DOI | MR

[13] Grossman B., “$p$-Adic strings, the Weyl conjectures and anomalies”, Phys. Lett. B., 197 (1987), 101–104 | DOI | MR | Zbl

[14] Zabrodin A. V., “Non-archimedean strings and Bruhat–Tits trees”, Commun. Math. Phys., 123 (1989), 463–483 | DOI | MR | Zbl

[15] Chekhov L. O., Mironov A. D., Zabrodin A. V., “Multiloop calculations in $p$-adic string theory and Bruhat–Tits trees”, Commun. Math. Phys., 125 (1989), 675–711 | DOI | MR | Zbl

[16] Schomerus V., , J. High Energy Phys., no. 6, 1999, Paper 030 arXiv: /hep-th/9903205 | MR

[17] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999, no. 9, Paper 032 ; arXiv: /hep-th/9908142 | MR

[18] Dasgupta K., Mukhi S., Rajesh G., “Noncommutative tachyons”, J. High Energy Phys., 2000, no. 6, Paper 022 ; arXiv: /hep-th/0005006 | MR

[19] Harvey J., Kraus P., Larsen F., Martinec E., “D-branes and strings as non-commutative solitons”, J. High Energy Phys., 2000, no. 07, Paper 042 ; arXiv: /hep-th/0005031 | MR

[20] Gerasimov A. A., Shatashvili S. L., “On exact tachyon potential in open string field theory”, J. High Energy Phys., 2000, no. 10, Paper 034 ; arXiv: /hep-th/0009103 | MR | Zbl

[21] Witten E., “On background-independent open-string field theory”, Phys. Rev. D., 46 (1992), 5467–5473 ; arXiv: /hep-th/9208027 | DOI | MR

[22] Witten E., “Some computations in background-independent off-shell string theory”, Phys. Rev. D., 47 (1993), 3405–3410 ; arXiv: /hep-th/9210065 | DOI | MR

[23] Shatashvili S. L., “Comment on the background independent open string theory”, Phys. Lett. B., 311 (1993), 83–86 ; arXiv: /hep-th/9303143 | DOI | MR

[24] Shatashvili S. L., On the problems with background independence in string theory, , 1993 arXiv: /hep-th/9311177 | MR

[25] Bogolubsky I., Localized solutions in the scalar field model with logarithmic nonlinearity, Talk at the Conf. on $p$-Adic Math. Phys., Moscow, 2003

[26] Gopakumar R., Minwalla S., Strominger A., “Noncommutative solitons”, J. High Energy Phys., 2000, no. 5, Paper 020 ; arXiv: /hep-th/0003160 | MR

[27] Dragovich B., Volovich I. V., “$p$-Adic strings and noncommutativity”, Noncommutative Structures in Mathematics and Physics, eds. S. Duplij, J. Wess, Kluwer, Dordrecht, 2001, 391–399 | MR

[28] Harvey J., Kraus P., Larsen F., “Exact noncommutative solitons”, J. High Energy Phys., 2000, no. 12, Paper 024 ; arXiv: /hep-th/0010060 | MR

[29] Vladimirov V. S., “Adelnye formuly dlya 4-chastichnykh drevesnykh strunnykh i superstrunnykh amplitud v odnoklassnykh kvadratichnykh polyakh”, Tr. MIAN, 245, 2004, 9–28 | MR | Zbl