Shilov Boundary and Topological Divisors of Zero
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 86-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a field complete with respect to a nontrivial Archimedean or non-Archimedean ultrametric absolute value and let $(A,\|\cdot \|)$ be a commutative normed $E$-algebra with unity whose spectral seminorm is $\|\cdot \|_{\mathrm {si}}$. Let $\operatorname {Mult}(A,\|\cdot \|)$ be the set of continuous multiplicative seminorms of $A$ and let $\mathcal S$ be the Shilov boundary for $(A,\|\cdot \|_{\mathrm {si}})$. An element $\psi$ of $\operatorname {Mult}(A,\|\cdot \|_{\mathrm {si}})$ belongs to $\mathcal S$ if and only if, for every neighborhood $\mathcal U$ of $\psi$ in $\operatorname {Mult}(A,\|\cdot \|)$, there exist $\theta\in{\mathcal U}$ and $g\in A$ that satisfy $\|g\|_{\mathrm {si}}=\theta (g)$ and $\gamma (g)\|g\|_{\mathrm {si}}$ for all $\gamma \in {\mathcal S}\setminus U$. Suppose that $A$ is uniform and $f\in A$. Then, $f$ is a topological divisor of zero if and only if there exists $\psi\in\mathcal S$ such that $\psi(f)=0$. Moreover, if $f$ is not a divisor of zero, then it is a topological divisor of zero if and only if the ideal $fA$ is not closed in $A$. Suppose that $A$ is ultrametric, complete, and Noetherian. All topological divisors of zero are divisors of zero. This applies to affinoid algebras. Let $A$ be a Krasner algebra $H(D)$ without nontrivial idempotents: an element $f\in H(D)$ is a topological divisor of zero if and only if $fH(D)$ is a closed ideal; moreover, $H(D)$ is a principal ideal ring if and only if it has no topological divisors of zero but $0$ (this new condition adds to the well-known set of equivalent conditions found in 1969).
@article{TM_2004_245_a8,
     author = {A. Escassut},
     title = {Shilov {Boundary} and {Topological} {Divisors} of {Zero}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {86--90},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a8/}
}
TY  - JOUR
AU  - A. Escassut
TI  - Shilov Boundary and Topological Divisors of Zero
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 86
EP  - 90
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a8/
LA  - en
ID  - TM_2004_245_a8
ER  - 
%0 Journal Article
%A A. Escassut
%T Shilov Boundary and Topological Divisors of Zero
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 86-90
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a8/
%G en
%F TM_2004_245_a8
A. Escassut. Shilov Boundary and Topological Divisors of Zero. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 86-90. http://geodesic.mathdoc.fr/item/TM_2004_245_a8/

[1] Berkovich V., Spectral theory and analytic geometry over non-Archimedean fields, Surv. and Monogr., 33, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl

[2] Boussaf K., Escassut A., “Absolute values on algebras $H(D)$”, Ann. Math. B. Pascal., 2:2 (1995), 15–23 | MR | Zbl

[3] Boussaf K., “Images of circular filters”, Intern. J. Math., Game Theory and Algebra, 10:5 (2000), 365–372 | MR | Zbl

[4] Boussaf K., “Shilov boundary for an algebra $H(D)$”, Ital. J. Pure and Appl. Math., 2000, no. 8, 75–82 | MR | Zbl

[5] Boussaf K., Hemdahoui M., Mainetti N., “Tree structure on the set of multiplicative semi-norms of Krasner algebras $H(D)$”, Rev. Mat. Complut., 13:1 (2000), 85–109 | MR | Zbl

[6] Boussaf K., Escassut A., Mainetti N., “Analytic mappings in the tree $\mathrm{Mult}(K[x])$”, $p$-Adic numbers in number theory, analytic geometry and functional analysis, Belg. Math. Soc., Brussels, 2002, 25–47 | MR | Zbl

[7] Escassut A., “Algèbres d'éléments analytiques au sens de Krasner dans un corps valué non archimédien complet algébriquement clos”, C. R. Acad. Sci. Paris A., 270 (1970), 758–761 | MR | Zbl

[8] Escassut A., “$T$-filtres, ensembles analytiques et transformation de Fourier $p$-adique”, Ann. Inst. Fourier, 25:2 (1975), 45–80 | MR | Zbl

[9] Escassut A., “Algèbres de Krasner intègres et noetheriennes”, Indag. Math., 38:2 (1976), 109–130 | MR

[10] Escassut A., Analytic elements in $p$-adic analysis, World Sci., Singapore, 1995 | MR | Zbl

[11] Escassut A., Mainetti N., “Shilov boundary for ultrametric algebras”, $p$-Adic numbers in number theory, analytic geometry and functional analysis, Belg. Math. Soc., Brussels, 2002, 81–89 | MR | Zbl

[12] Escassut A., Mainetti N., “Shilov boundary for normed algebras”, Topics in Analysis and its Applications, Proc. NATO Workshop (Yerevan, 2002), NATO Sci. Ser. 2: Math., Phys., Chem., 147, Kluwer, Dordrecht, 2004 | MR | Zbl

[13] Escassut A., Ultrametric Banach algebras, World Sci., Singapore, 2003 | MR | Zbl

[14] Garandel G., “Les semi-normes multiplicatives sur les algèbres d'éléments analytiques au sens de Krasner”, Indag. Math., 37:4 (1975), 327–341 | MR

[15] Gelfand I. M., Raikov D. A., Chilov G. E., Les anneaux normés commutatifs, Monogr. Intern. Math. Mod., 5, Gauthier-Villars, Paris, 1964 | Zbl

[16] Guennebaud B., “Algèbres localement convexes sur les corps valués”, Bull. Sci. Math., 91 (1967), 75–96 | MR | Zbl

[17] Guennebaud B., Sur une notion de spectre pour les algèbres normées ultramétriques, Thèse, Univ. Poitiers, 1973 | Zbl

[18] Krasner M., “Prolongement analytique uniforme et multiforme dans les corps valués complets”, Les tendances géométriques en algèbre et théorie des nombres, Clermont-Ferrand, 1964, Colloq. Intern. CNRS, 143, Centre Nat. Rech. Sci., Paris, 1966, 94–141 | MR

[19] Tate J., “Rigid analytic spaces”, Invent. Math., 12 (1971), 257–289 | DOI | MR | Zbl

[20] Van Rooij A. C. M., Non-Archimedean functional analysis, M. Dekker, New York, 1978 | MR