Shilov Boundary and Topological Divisors of Zero
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 86-90

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a field complete with respect to a nontrivial Archimedean or non-Archimedean ultrametric absolute value and let $(A,\|\cdot \|)$ be a commutative normed $E$-algebra with unity whose spectral seminorm is $\|\cdot \|_{\mathrm {si}}$. Let $\operatorname {Mult}(A,\|\cdot \|)$ be the set of continuous multiplicative seminorms of $A$ and let $\mathcal S$ be the Shilov boundary for $(A,\|\cdot \|_{\mathrm {si}})$. An element $\psi$ of $\operatorname {Mult}(A,\|\cdot \|_{\mathrm {si}})$ belongs to $\mathcal S$ if and only if, for every neighborhood $\mathcal U$ of $\psi$ in $\operatorname {Mult}(A,\|\cdot \|)$, there exist $\theta\in{\mathcal U}$ and $g\in A$ that satisfy $\|g\|_{\mathrm {si}}=\theta (g)$ and $\gamma (g)\|g\|_{\mathrm {si}}$ for all $\gamma \in {\mathcal S}\setminus U$. Suppose that $A$ is uniform and $f\in A$. Then, $f$ is a topological divisor of zero if and only if there exists $\psi\in\mathcal S$ such that $\psi(f)=0$. Moreover, if $f$ is not a divisor of zero, then it is a topological divisor of zero if and only if the ideal $fA$ is not closed in $A$. Suppose that $A$ is ultrametric, complete, and Noetherian. All topological divisors of zero are divisors of zero. This applies to affinoid algebras. Let $A$ be a Krasner algebra $H(D)$ without nontrivial idempotents: an element $f\in H(D)$ is a topological divisor of zero if and only if $fH(D)$ is a closed ideal; moreover, $H(D)$ is a principal ideal ring if and only if it has no topological divisors of zero but $0$ (this new condition adds to the well-known set of equivalent conditions found in 1969).
@article{TM_2004_245_a8,
     author = {A. Escassut},
     title = {Shilov {Boundary} and {Topological} {Divisors} of {Zero}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {86--90},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a8/}
}
TY  - JOUR
AU  - A. Escassut
TI  - Shilov Boundary and Topological Divisors of Zero
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 86
EP  - 90
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a8/
LA  - en
ID  - TM_2004_245_a8
ER  - 
%0 Journal Article
%A A. Escassut
%T Shilov Boundary and Topological Divisors of Zero
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 86-90
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a8/
%G en
%F TM_2004_245_a8
A. Escassut. Shilov Boundary and Topological Divisors of Zero. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 86-90. http://geodesic.mathdoc.fr/item/TM_2004_245_a8/