Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2004_245_a27, author = {V. S. Varadarajan}, title = {Arithmetic {Quantum} {Physics:} {Why,} {What,} and {Whither}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {273--280}, publisher = {mathdoc}, volume = {245}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a27/} }
V. S. Varadarajan. Arithmetic Quantum Physics: Why, What, and Whither. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 273-280. http://geodesic.mathdoc.fr/item/TM_2004_245_a27/
[1] Varadarajan V. S., “Non-Archimedean models for space–time”, Mod. Phys. Lett. A., 16 (2001), 387–395 | DOI | MR
[2] Riemann B., “Ueber die Hypothesen, welche der Geometrie zu Grunde liegen”, Gesammelte mathematische Werke, wissenschaftlicher Nachlaß{u}nd Nachträge, Collected papers, eds. von H. Weber, R. Dedekind, von R. Narasimhan, Springer, Berlin, 1990, 254–269 ; Clifford W. K., On the hypotheses which lie at the bases of geometry Mathematical papers, Chelsea Publ. Co., New York, 1968 ; Spivak M., “On the hypotheses which lie at the foundations of geometry”, A comprehensive introduction to differential geometry, v. 2, Publish or Perish, Berkeley, 1979, 135–153 | MR | MR
[3] Clifford W. K., “On the space-theory of matter”, Mathematical papers, Chelsea Publ. Co., New York, 1968, 21–22
[4] Weyl H., Raum, Zeit, Materie. 4-te erw. Aufl., Springer, Berlin, 1921 ; Space–Time–Matter, Dover, New York, 1950 | MR
[5] Volovich I. V., “$p$-Adic string”, Class. and Quant. Grav., 4 (1987), L83–L87 | DOI | MR
[6] Hilbert D., Foundations of geometry, Open Court, La Salle, 1971 | MR
[7] Manin Yu. I., “Reflections on arithmetical physics”, Conformal invariance and string theory, Acad. Press, Boston, 1989, 293–303 ; Selected papers, World Sci., Singapore, 1996 | MR | MR
[8] Harish-Chandra, “Harmonic analysis on reductive $p$-adic groups”, Harmonic analysis on homogeneous spaces, Proc. Symp. Pure Math., 26, Amer. Math. Soc., Providence, RI, 1973, 167–192 ; V. S. Varadarajan (eds.), Collected papers, v. 4, Springer, New York, 1984 | MR
[9] Weil A., “Sur certains groupes d'opérateurs unitaires”, Acta Math., 111 (1964), 143–211 | DOI | MR | Zbl
[10] Weil A., “Sur la formule de Siegel dans la théorie des groupes classiques”, Acta Math., 113 (1965), 1–87 | DOI | MR | Zbl
[11] Shale D., “Linear symmetries of free boson fields”, Trans. Amer. Math. Soc., 103 (1962), 149–167 | DOI | MR | Zbl
[12] Zelenov E. I., “Representations of commutation relations for $p$-adic systems of infinitely many degrees of freedom”, J. Math. Phys., 33:1 (1992), 178–188 | DOI | MR | Zbl
[13] Zelenov E. I., “$p$-Adic Heisenberg group and the Maslov index”, Commun. Math. Phys., 155 (1993), 489–502 | DOI | MR | Zbl
[14] Zelenov E. I., “$p$-Adicheskaya beskonechnomernaya simplekticheskaya gruppa”, Izv. RAN. Ser. mat., 57:6 (1993), 29–51 | MR | Zbl
[15] Zelenov E. I., “On geometrical interpretation of the $p$-adic Maslov index”, Commun. Math. Phys., 159 (1994), 539–547 | DOI | MR | Zbl
[16] Rogawski J. D., “The multiplicity formula for $A$-packets”, The zeta functions of Picard modular surfaces, eds. R. Langlands, D. Ramakrishnan, Publ. CRM Univ. Montreal, Montreal, 1992, 395–419 | MR
[17] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR
[18] Digernes T., Varadarajan V. S., Varadhan S. R. S., “Finite approximations to quantum systems”, Rev. Math. Phys., 6:4 (1994), 621–648 | DOI | MR | Zbl
[19] Albeverio S., Gordon E. I., Khrennikov A. Yu., “Finite-dimensional approximations of operators in the Hilbert spaces of functions on locally compact Abelian groups”, Acta Appl. Math., 64 (2000), 33–73 | DOI | MR | Zbl
[20] Varadarajan V. S., “Path integrals for a class of $p$-adic Schrödinger equations”, Lett. Math. Phys., 39 (1997), 97–106 | DOI | MR | Zbl
[21] Kochubei A. N., Sait-Ametov M. R., “Interaction measures on the space of distributions over the field of $p$-adic numbers”, Infin. Dimens. Anal. Quant. Probab. Relat. Top., 6:3 (2003), 389–411 | DOI | MR | Zbl
[22] Harish-Chandra, Collected papers, v. 4, Springer, New York, 1984
[23] Freund P. G. O., “Scattering on $p$-adic and on adelic symmetric spaces”, Phys. Lett. B., 257 (1991), 119–124 | DOI | MR
[24] Khrennikov A. Yu., “Statistical interpretation of $p$-adic quantum theories with $p$-adic valued wave functions”, J. Math. Phys., 36 (1995), 6625–6632 | DOI | MR | Zbl
[25] Khrennikov A. Yu., $p$-Adic valued distributions in mathematical physics, Kluwer, Dordrecht, 1994 | MR | Zbl