Voir la notice du chapitre de livre
@article{TM_2004_245_a24,
author = {W. H. Schikhof},
title = {An {Approach} to the {Ultrametric} {Moment} {Problem}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {251--256},
year = {2004},
volume = {245},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a24/}
}
W. H. Schikhof. An Approach to the Ultrametric Moment Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 251-256. http://geodesic.mathdoc.fr/item/TM_2004_245_a24/
[1] De Grande-De Kimpe N., Khrennikov A., Van Hamme L., “The Fourier transform for $p$-adic tempered distributions”, $p$-Adic functional analysis, Lect. Notes Pure and Appl. Math., 207, M. Dekker, New York, 1999, 97–125 | MR
[2] Van Hamme L., “The $p$-adic moment problem”, $p$-Adic functional analysis, eds. N. De Grande-De Kimpe, S. Navarro, W. Schikhof, Univ. Santiago, Santiago, Chile, 1994, 151–163
[3] Martinez-Maurica J., Navarro S., “$p$-Adic Ascoli theorems”, Rev. Mat. Univ. Complut. Madrid, 3 (1990), 19–27 | MR | Zbl
[4] van Rooij A. C. M., Non-Archimedean functional analysis, M. Dekker, New York, 1978 | MR
[5] Schikhof W. H., Ultrametric calculus, Cambridge Stud. Adv. Math., 4, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[6] Schikhof W. H., “A perfect duality between $p$-adic Banach spaces and compactoids”, Indag. Math. N.S., 6 (1995), 325–339 | DOI | MR | Zbl