An Approach to the Ultrametric Moment Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 251-256

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Hausdorff–Widder–Bernstein theorem describes a 1–1 correspondence between probability measures $\mu$ on $[0,1]$ and a class of the so-called completely monotone functions $f$ on $(0,\infty)$ by means of the formula $f(x)=\int _0^1 s^x\,d\mu(s)$. In the present paper, we establish a non-Archimedean version of this theorem.
@article{TM_2004_245_a24,
     author = {W. H. Schikhof},
     title = {An {Approach} to the {Ultrametric} {Moment} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {251--256},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a24/}
}
TY  - JOUR
AU  - W. H. Schikhof
TI  - An Approach to the Ultrametric Moment Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 251
EP  - 256
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a24/
LA  - en
ID  - TM_2004_245_a24
ER  - 
%0 Journal Article
%A W. H. Schikhof
%T An Approach to the Ultrametric Moment Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 251-256
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a24/
%G en
%F TM_2004_245_a24
W. H. Schikhof. An Approach to the Ultrametric Moment Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 251-256. http://geodesic.mathdoc.fr/item/TM_2004_245_a24/