An Approach to the Ultrametric Moment Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 251-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical Hausdorff–Widder–Bernstein theorem describes a 1–1 correspondence between probability measures $\mu$ on $[0,1]$ and a class of the so-called completely monotone functions $f$ on $(0,\infty)$ by means of the formula $f(x)=\int _0^1 s^x\,d\mu(s)$. In the present paper, we establish a non-Archimedean version of this theorem.
@article{TM_2004_245_a24,
     author = {W. H. Schikhof},
     title = {An {Approach} to the {Ultrametric} {Moment} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {251--256},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a24/}
}
TY  - JOUR
AU  - W. H. Schikhof
TI  - An Approach to the Ultrametric Moment Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 251
EP  - 256
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a24/
LA  - en
ID  - TM_2004_245_a24
ER  - 
%0 Journal Article
%A W. H. Schikhof
%T An Approach to the Ultrametric Moment Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 251-256
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a24/
%G en
%F TM_2004_245_a24
W. H. Schikhof. An Approach to the Ultrametric Moment Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 251-256. http://geodesic.mathdoc.fr/item/TM_2004_245_a24/

[1] De Grande-De Kimpe N., Khrennikov A., Van Hamme L., “The Fourier transform for $p$-adic tempered distributions”, $p$-Adic functional analysis, Lect. Notes Pure and Appl. Math., 207, M. Dekker, New York, 1999, 97–125 | MR

[2] Van Hamme L., “The $p$-adic moment problem”, $p$-Adic functional analysis, eds. N. De Grande-De Kimpe, S. Navarro, W. Schikhof, Univ. Santiago, Santiago, Chile, 1994, 151–163

[3] Martinez-Maurica J., Navarro S., “$p$-Adic Ascoli theorems”, Rev. Mat. Univ. Complut. Madrid, 3 (1990), 19–27 | MR | Zbl

[4] van Rooij A. C. M., Non-Archimedean functional analysis, M. Dekker, New York, 1978 | MR

[5] Schikhof W. H., Ultrametric calculus, Cambridge Stud. Adv. Math., 4, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[6] Schikhof W. H., “A perfect duality between $p$-adic Banach spaces and compactoids”, Indag. Math. N.S., 6 (1995), 325–339 | DOI | MR | Zbl