An Approach to the Ultrametric Moment Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 251-256
Voir la notice de l'article provenant de la source Math-Net.Ru
The classical Hausdorff–Widder–Bernstein theorem describes a 1–1 correspondence between probability measures $\mu$ on $[0,1]$ and a class of the so-called completely monotone functions $f$ on $(0,\infty)$ by means of the formula
$f(x)=\int _0^1 s^x\,d\mu(s)$. In the present paper, we establish a non-Archimedean version of this theorem.
@article{TM_2004_245_a24,
author = {W. H. Schikhof},
title = {An {Approach} to the {Ultrametric} {Moment} {Problem}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {251--256},
publisher = {mathdoc},
volume = {245},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a24/}
}
W. H. Schikhof. An Approach to the Ultrametric Moment Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 251-256. http://geodesic.mathdoc.fr/item/TM_2004_245_a24/