Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a~Linear Programming Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 241-250

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the present work is to describe, for a given quantum-mechanical system and a noncommutative) family of observables $A_\nu$, density matrices $\rho$ that possess the following property: In a certain probability space, there exists a family of random variables $\xi _\nu$ such that, for any set of pairwise commuting operators $A_{\nu _1}, A_{\nu _2}, \dots,A_{\nu _n}$, the quantum-mechanical correlation coefficient of observables is equal to the classical correlation coefficient of random variables: $\mathrm {Sp}(\rho A_{\nu _1}A_{\nu _2}\dots A_{\nu _n})=\mathbb E(\xi _{\nu _1}\xi _{\nu _2} \dots \xi _{\nu _n})$. It turns out that the existence of such random variables can be expressed in terms of a solution to a special optimization problem, a linear programming problem. The technique developed allows one to construct an earlier unknown solution to an important specific problem of the classical representation of a correlation function of the form $g\cos (\alpha -\beta )$ as the classical correlation of random processes $\xi _\alpha$ and $\eta _\beta$ such that $|\xi _\alpha| \le 1$ and $|\eta _\beta| \le 1$, in the parameter range ${2}/{\pi }$.
@article{TM_2004_245_a23,
     author = {R. A. Roshchin},
     title = {Generalization of the {Spectral} {Theorem} to the {Case} of {Families} of {Noncommuting} {Operators} and {a~Linear} {Programming} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {241--250},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a23/}
}
TY  - JOUR
AU  - R. A. Roshchin
TI  - Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a~Linear Programming Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 241
EP  - 250
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a23/
LA  - ru
ID  - TM_2004_245_a23
ER  - 
%0 Journal Article
%A R. A. Roshchin
%T Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a~Linear Programming Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 241-250
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a23/
%G ru
%F TM_2004_245_a23
R. A. Roshchin. Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a~Linear Programming Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 241-250. http://geodesic.mathdoc.fr/item/TM_2004_245_a23/