Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a~Linear Programming Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 241-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the present work is to describe, for a given quantum-mechanical system and a noncommutative) family of observables $A_\nu$, density matrices $\rho$ that possess the following property: In a certain probability space, there exists a family of random variables $\xi _\nu$ such that, for any set of pairwise commuting operators $A_{\nu _1}, A_{\nu _2}, \dots,A_{\nu _n}$, the quantum-mechanical correlation coefficient of observables is equal to the classical correlation coefficient of random variables: $\mathrm {Sp}(\rho A_{\nu _1}A_{\nu _2}\dots A_{\nu _n})=\mathbb E(\xi _{\nu _1}\xi _{\nu _2} \dots \xi _{\nu _n})$. It turns out that the existence of such random variables can be expressed in terms of a solution to a special optimization problem, a linear programming problem. The technique developed allows one to construct an earlier unknown solution to an important specific problem of the classical representation of a correlation function of the form $g\cos (\alpha -\beta )$ as the classical correlation of random processes $\xi _\alpha$ and $\eta _\beta$ such that $|\xi _\alpha| \le 1$ and $|\eta _\beta| \le 1$, in the parameter range ${2}/{\pi }$.
@article{TM_2004_245_a23,
     author = {R. A. Roshchin},
     title = {Generalization of the {Spectral} {Theorem} to the {Case} of {Families} of {Noncommuting} {Operators} and {a~Linear} {Programming} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {241--250},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a23/}
}
TY  - JOUR
AU  - R. A. Roshchin
TI  - Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a~Linear Programming Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 241
EP  - 250
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a23/
LA  - ru
ID  - TM_2004_245_a23
ER  - 
%0 Journal Article
%A R. A. Roshchin
%T Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a~Linear Programming Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 241-250
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a23/
%G ru
%F TM_2004_245_a23
R. A. Roshchin. Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a~Linear Programming Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 241-250. http://geodesic.mathdoc.fr/item/TM_2004_245_a23/

[1] fon Neiman I., Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[2] Moren K., Metody gilbertova prostranstva, Mir, M., 1965 | MR

[3] Volovich I. V., “Quantum cryptography in space and Bell's theorem”, Foundations of probability and physics, ed. A. Khrennikov, World Sci., Singapore, 2001, 364–372 | MR

[4] Bell J. S., “On the Einstein–Podolsky–Rosen paradox”, Physics, 1 (1965), 195–200

[5] Volovich I. V., Bell's theorem and locality in space, , 2000 arXiv: /quant-ph/0012010

[6] Volovich I. V., Volovich Ya. I., On classical and quantum cryptography, , 2001 arXiv: /quant-ph/0108133 | MR

[7] Roschin R. A., Volovich I. V., “Relativistic corrections to spin correlators and Bell's theorem”, Foundations of probability and physics, 2, Proc. Conf. (Växjö (Sweden)), Math. Modelling in Phys., Eng. and Cognitive Sci., 5, Växjö Univ. Press, Växjö, 2002, 533–545 | MR

[8] Khrennikov A., Kozyrev S., Noncommutative probability in classical systems, , 2002 arXiv: /quant-ph/0211033 | MR

[9] Shor P. W., “Capacities of quantum channels and how to find them”, Math. Program., 97 (2003), 311–335 | MR | Zbl

[10] Skhreiver A., Teoriya lineinogo i tselochislennogo programmirovaniya, T. 1, Mir, M., 1991

[11] Khrennikov A., Volovich I., Einstein, Podolsky and Rosen versus Bohm and Bell, , 2002 arXiv: /quant-ph/0211078

[12] ftp://ftp.ics.ele.tue.nl/pub/lp_solve

[13] http://www.mi.ras.ru/r̃oschin