Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2004_245_a23, author = {R. A. Roshchin}, title = {Generalization of the {Spectral} {Theorem} to the {Case} of {Families} of {Noncommuting} {Operators} and {a~Linear} {Programming} {Problem}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {241--250}, publisher = {mathdoc}, volume = {245}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a23/} }
TY - JOUR AU - R. A. Roshchin TI - Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a~Linear Programming Problem JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 241 EP - 250 VL - 245 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2004_245_a23/ LA - ru ID - TM_2004_245_a23 ER -
%0 Journal Article %A R. A. Roshchin %T Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a~Linear Programming Problem %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2004 %P 241-250 %V 245 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2004_245_a23/ %G ru %F TM_2004_245_a23
R. A. Roshchin. Generalization of the Spectral Theorem to the Case of Families of Noncommuting Operators and a~Linear Programming Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 241-250. http://geodesic.mathdoc.fr/item/TM_2004_245_a23/
[1] fon Neiman I., Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR
[2] Moren K., Metody gilbertova prostranstva, Mir, M., 1965 | MR
[3] Volovich I. V., “Quantum cryptography in space and Bell's theorem”, Foundations of probability and physics, ed. A. Khrennikov, World Sci., Singapore, 2001, 364–372 | MR
[4] Bell J. S., “On the Einstein–Podolsky–Rosen paradox”, Physics, 1 (1965), 195–200
[5] Volovich I. V., Bell's theorem and locality in space, , 2000 arXiv: /quant-ph/0012010
[6] Volovich I. V., Volovich Ya. I., On classical and quantum cryptography, , 2001 arXiv: /quant-ph/0108133 | MR
[7] Roschin R. A., Volovich I. V., “Relativistic corrections to spin correlators and Bell's theorem”, Foundations of probability and physics, 2, Proc. Conf. (Växjö (Sweden)), Math. Modelling in Phys., Eng. and Cognitive Sci., 5, Växjö Univ. Press, Växjö, 2002, 533–545 | MR
[8] Khrennikov A., Kozyrev S., Noncommutative probability in classical systems, , 2002 arXiv: /quant-ph/0211033 | MR
[9] Shor P. W., “Capacities of quantum channels and how to find them”, Math. Program., 97 (2003), 311–335 | MR | Zbl
[10] Skhreiver A., Teoriya lineinogo i tselochislennogo programmirovaniya, T. 1, Mir, M., 1991
[11] Khrennikov A., Volovich I., Einstein, Podolsky and Rosen versus Bohm and Bell, , 2002 arXiv: /quant-ph/0211078
[12] ftp://ftp.ics.ele.tue.nl/pub/lp_solve