Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2004_245_a20, author = {M. Nilsson and R. Nyqvist}, title = {The {Asymptotic} {Number} of {Periodic} {Points} of {Discrete} $p${-Adic} {Dynamical} {Systems}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {210--217}, publisher = {mathdoc}, volume = {245}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a20/} }
TY - JOUR AU - M. Nilsson AU - R. Nyqvist TI - The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 210 EP - 217 VL - 245 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2004_245_a20/ LA - en ID - TM_2004_245_a20 ER -
M. Nilsson; R. Nyqvist. The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 210-217. http://geodesic.mathdoc.fr/item/TM_2004_245_a20/
[1] Apostol T. M., Introduction to analytic number theory, Springer, New York, 1976 | MR
[2] Arrowsmith D. K., Vivaldi F., “Geometry of $p$-adic Siegel discs”, Physica D., 71 (1994), 222–236 | DOI | MR | Zbl
[3] Batra A., Morton P., “Algebraic dynamics of polynomial maps on the algebraic closure of a finite field, I”, Rocky Mount. J. Math., 24:2 (1994), 453–481 | DOI | MR | Zbl
[4] Batra A., Morton P., “Algebraic dynamics of polynomial maps on the algebraic closure of a finite field, II”, Rocky Mount. J. Math., 24:3 (1994), 905–932 | DOI | MR | Zbl
[5] Benedetto R. L., “$p$-Adic dynamics and Sullivan's no wandering domains theorem”, Compos. Math., 122 (2000), 281–298 | DOI | MR | Zbl
[6] Benedetto R., “Hyperbolic maps of $p$-adic dynamics”, Ergod. Theory and Dyn. Syst., 21 (2001), 1–11 | DOI | MR | Zbl
[7] Dummit D. S., Foote R. M., Abstract algebra, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1999 | MR | Zbl
[8] Gouvêa F. Q., $p$-Adic numbers: An introduction, 2nd ed., Springer, Berlin etc., 1997 | MR | Zbl
[9] Humphreys J. F., A course in group theory, Oxford Univ. Press, Oxford, 1996 | MR | Zbl
[10] Khrennikov A. Yu., Non-Archimedean analysis: Quantum paradoxes, dynamical systems and biological models, Kluwer, Dordrecht, 1997 | MR | Zbl
[11] Khrennikov A., Nilsson M., “On the number of cycles of $p$-adic dynamical systems”, J. Number Theory, 90:2 (2001), 255–264 | DOI | MR | Zbl
[12] Khrennikov A., Nilsson M., Nyqvist R., “The asymptotic number of periodic points of discrete polynomial $p$-adic dynamical system”, Ultrametric functional analysis, Proc. Seventh Intern. Conf. on $p$-Adic Analysis, Contemp. Math., 319, Amer. Math. Soc., Providence, RI, 2003, 159–166 | MR | Zbl
[13] Lubin J., “Non-Archimedean dynamical systems”, Compos. Math., 94 (1994), 321–346 | MR | Zbl
[14] Morandi P., Field and Galois theory, Springer, New York, 1996 | MR
[15] Morton P., Patel P., “The Galois theory of periodic points of polynomial maps”, Proc. London Math. Soc., 68 (1994), 224–263 | DOI | MR
[16] Nilsson M., “Cycles of monomial and perturbated monomial $p$-adic dynamical systems”, Ann. Math. B. Pascal, 7:1 (2000), 37–63 | MR | Zbl
[17] Nilsson M., Cycles of monomial $p$-adic dynamical systems, Licentiate thesis, School Math. and Syst. Eng., Växjö Univ., Växjö, 2001
[18] Nilsson M., Periodic points of monomials in the field of $p$-adic numbers, Rept. MSI 02020, Mar., Växjö Univ., Växjö, 2002
[19] Nyqvist R., Linear factors of discrete dynamical systems, Rept. MSI 02029, Apr., Växjö Univ., Växjö, 2002
[20] Pohst M., Zassenhaus H., Algorithmic algebraic number theory, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl
[21] Schikhof W. H., Ultrametric calculus: An introduction to $p$-adic analysis, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[22] Stevenhagen P., Lenstra H. W. Jr., “Chebotarev and his density theorem”, Math. Intell., 18:2 (1996), 26–37 | DOI | MR | Zbl
[23] Vivaldi F., Hatjispyros S., “Galois theory of periodic orbits of rational maps”, Nonlinearity, 5 (1992), 961–978 | DOI | MR | Zbl
[24] Vivaldi F., “Dynamics over irreducible polynomials”, Nonlinearity, 5 (1992), 941–960 | DOI | MR | Zbl