The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 210-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A(n,a,y)$ denote a specific weighted average of different zeros of $f^n(x)-x$ for all prime numbers $p\leq y$, where $f(x)=x^p+ax\in\mathbb{F}_p[x]$, $a\neq 0$, and $f^n$ denotes the $n$-fold composition of $f$ by itself. If $a=1$, then $A(n, a, x)\to 0$ as $x\to\infty$, and if $a>1$, then $A(n,a,x) \to 1$ as $x \to \infty$. We also discuss a method for counting the number of linear factors of a polynomial whose zeros are $n$-periodic points of $f(x)\in\mathbb Z[x]$ by using a theorem of Frobenius. Finally, we obtain some results in the monomial case over $p$-adic numbers by using this method.
@article{TM_2004_245_a20,
     author = {M. Nilsson and R. Nyqvist},
     title = {The {Asymptotic} {Number} of {Periodic} {Points} of {Discrete} $p${-Adic} {Dynamical} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {210--217},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a20/}
}
TY  - JOUR
AU  - M. Nilsson
AU  - R. Nyqvist
TI  - The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 210
EP  - 217
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a20/
LA  - en
ID  - TM_2004_245_a20
ER  - 
%0 Journal Article
%A M. Nilsson
%A R. Nyqvist
%T The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 210-217
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a20/
%G en
%F TM_2004_245_a20
M. Nilsson; R. Nyqvist. The Asymptotic Number of Periodic Points of Discrete $p$-Adic Dynamical Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 210-217. http://geodesic.mathdoc.fr/item/TM_2004_245_a20/

[1] Apostol T. M., Introduction to analytic number theory, Springer, New York, 1976 | MR

[2] Arrowsmith D. K., Vivaldi F., “Geometry of $p$-adic Siegel discs”, Physica D., 71 (1994), 222–236 | DOI | MR | Zbl

[3] Batra A., Morton P., “Algebraic dynamics of polynomial maps on the algebraic closure of a finite field, I”, Rocky Mount. J. Math., 24:2 (1994), 453–481 | DOI | MR | Zbl

[4] Batra A., Morton P., “Algebraic dynamics of polynomial maps on the algebraic closure of a finite field, II”, Rocky Mount. J. Math., 24:3 (1994), 905–932 | DOI | MR | Zbl

[5] Benedetto R. L., “$p$-Adic dynamics and Sullivan's no wandering domains theorem”, Compos. Math., 122 (2000), 281–298 | DOI | MR | Zbl

[6] Benedetto R., “Hyperbolic maps of $p$-adic dynamics”, Ergod. Theory and Dyn. Syst., 21 (2001), 1–11 | DOI | MR | Zbl

[7] Dummit D. S., Foote R. M., Abstract algebra, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 1999 | MR | Zbl

[8] Gouvêa F. Q., $p$-Adic numbers: An introduction, 2nd ed., Springer, Berlin etc., 1997 | MR | Zbl

[9] Humphreys J. F., A course in group theory, Oxford Univ. Press, Oxford, 1996 | MR | Zbl

[10] Khrennikov A. Yu., Non-Archimedean analysis: Quantum paradoxes, dynamical systems and biological models, Kluwer, Dordrecht, 1997 | MR | Zbl

[11] Khrennikov A., Nilsson M., “On the number of cycles of $p$-adic dynamical systems”, J. Number Theory, 90:2 (2001), 255–264 | DOI | MR | Zbl

[12] Khrennikov A., Nilsson M., Nyqvist R., “The asymptotic number of periodic points of discrete polynomial $p$-adic dynamical system”, Ultrametric functional analysis, Proc. Seventh Intern. Conf. on $p$-Adic Analysis, Contemp. Math., 319, Amer. Math. Soc., Providence, RI, 2003, 159–166 | MR | Zbl

[13] Lubin J., “Non-Archimedean dynamical systems”, Compos. Math., 94 (1994), 321–346 | MR | Zbl

[14] Morandi P., Field and Galois theory, Springer, New York, 1996 | MR

[15] Morton P., Patel P., “The Galois theory of periodic points of polynomial maps”, Proc. London Math. Soc., 68 (1994), 224–263 | DOI | MR

[16] Nilsson M., “Cycles of monomial and perturbated monomial $p$-adic dynamical systems”, Ann. Math. B. Pascal, 7:1 (2000), 37–63 | MR | Zbl

[17] Nilsson M., Cycles of monomial $p$-adic dynamical systems, Licentiate thesis, School Math. and Syst. Eng., Växjö Univ., Växjö, 2001

[18] Nilsson M., Periodic points of monomials in the field of $p$-adic numbers, Rept. MSI 02020, Mar., Växjö Univ., Växjö, 2002

[19] Nyqvist R., Linear factors of discrete dynamical systems, Rept. MSI 02029, Apr., Växjö Univ., Växjö, 2002

[20] Pohst M., Zassenhaus H., Algorithmic algebraic number theory, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[21] Schikhof W. H., Ultrametric calculus: An introduction to $p$-adic analysis, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[22] Stevenhagen P., Lenstra H. W. Jr., “Chebotarev and his density theorem”, Math. Intell., 18:2 (1996), 26–37 | DOI | MR | Zbl

[23] Vivaldi F., Hatjispyros S., “Galois theory of periodic orbits of rational maps”, Nonlinearity, 5 (1992), 961–978 | DOI | MR | Zbl

[24] Vivaldi F., “Dynamics over irreducible polynomials”, Nonlinearity, 5 (1992), 941–960 | DOI | MR | Zbl