$p$-Adic Monomial Dynamical Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 202-209

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider discrete dynamical systems in the field of $p$-adic numbers, $\mathbb{Q}_p$, for prime numbers $p\geq 3$. We study systems that are given by iterations of the monomial function $x\mapsto x^n$, where $n\geq 2$ is an integer. The dynamics looks totally different depending on whether ${p\mid n}$ or not. In both cases, interesting dynamics occurs on the unit sphere, $S_1(0)$ in $\mathbb {Q}_p$. In this article, we state some results about cycles and fuzzy cycles.
@article{TM_2004_245_a19,
     author = {M. Nilsson},
     title = {$p${-Adic} {Monomial} {Dynamical} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {202--209},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a19/}
}
TY  - JOUR
AU  - M. Nilsson
TI  - $p$-Adic Monomial Dynamical Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 202
EP  - 209
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a19/
LA  - en
ID  - TM_2004_245_a19
ER  - 
%0 Journal Article
%A M. Nilsson
%T $p$-Adic Monomial Dynamical Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 202-209
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a19/
%G en
%F TM_2004_245_a19
M. Nilsson. $p$-Adic Monomial Dynamical Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 202-209. http://geodesic.mathdoc.fr/item/TM_2004_245_a19/