Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2004_245_a19, author = {M. Nilsson}, title = {$p${-Adic} {Monomial} {Dynamical} {Systems}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {202--209}, publisher = {mathdoc}, volume = {245}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a19/} }
M. Nilsson. $p$-Adic Monomial Dynamical Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 202-209. http://geodesic.mathdoc.fr/item/TM_2004_245_a19/
[1] Albeverio S., Khrennikov A. Yu., Kloeden P., “Memory retrieval as a $p$-adic dynamical system”, Biosystems, 49 (1999), 105–115 | DOI
[2] Arrowsmith D. K., Vivaldi F., “Geometry of $p$-adic Siegel discs”, Physica D., 71 (1994), 222–236 | DOI | MR | Zbl
[3] Benedetto R. L., Fatou components in $p$-adic dynamics, PhD Thes. Dept. Math., May 1998, Brown Univ.
[4] Dubischar D., Gundlach V. M., Khrennikov A., Steinkamp O., “Attractors of random dynamical systems over $p$-adic numbers and a model of “noisy” cognitive processes”, Physica D., 130 (1999), 1–12 | DOI | MR | Zbl
[5] Gouvêa F. Q., $p$-Adic numbers: An introduction, Springer, Berlin, 1997 | MR | Zbl
[6] Khrennikov A. Yu., “$p$-Adic discrete dynamical systems and collective behaviour of information states in cognitive models”, Discrete Dynamics in Nature and Society, 5 (2000), 59–69 | DOI
[7] Khrennikov A. Yu., “Human subconscious as a $p$-adic dynamical system”, J. Theor. Biology, 193 (1998), 179–196 | DOI
[8] Khrennikov A. Yu., Non-Archimedean analysis: Quantum paradoxes, dynamical systems and biological models, Kluwer, Dordrecht, 1997 | MR | Zbl
[9] Khrennikov A., Nilsson M., “On the number of cycles of $p$-adic dynamical systems”, J. Number Theory, 90:2 (2001), 255–264 | DOI | MR | Zbl
[10] Khrennikov A., Nilsson M., Nyqvist R., “The asymptotic number of periodic points of discrete polynomial $p$-adic dynamical system”, Ultrametric functional analysis, Proc. Seventh Intern. Conf. on $p$-Adic Analysis, Contemp. Math., 319, Amer. Math. Soc., Providence, RI, 2003, 159–166 | MR | Zbl
[11] Lubin J., “Non-Archimedean dynamical systems”, Compos. Math., 94 (1994), 321–346 | MR | Zbl
[12] Nilsson M., Periodic points of monomials in the field of $p$-adic numbers, Tech. rept. MSI, Växjö Univ., 2002
[13] Nilsson M., “Fuzzy cycles of $p$-adic monomial dynamical systems”, Far East J. Dyn. Syst., 5:2 (2003), 149–173 | MR | Zbl
[14] Schikhof W. H., Ultrametric calculus: An introduction to $p$-adic analysis, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[15] De Smedt S., Khrennikov A. Yu., “Dynamical systems and theory of numbers”, Comment. Math. Univ. St. Pauli., 46 (1997), 117–132 | MR | Zbl