$p$-Adic Monomial Dynamical Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 202-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider discrete dynamical systems in the field of $p$-adic numbers, $\mathbb{Q}_p$, for prime numbers $p\geq 3$. We study systems that are given by iterations of the monomial function $x\mapsto x^n$, where $n\geq 2$ is an integer. The dynamics looks totally different depending on whether ${p\mid n}$ or not. In both cases, interesting dynamics occurs on the unit sphere, $S_1(0)$ in $\mathbb {Q}_p$. In this article, we state some results about cycles and fuzzy cycles.
@article{TM_2004_245_a19,
     author = {M. Nilsson},
     title = {$p${-Adic} {Monomial} {Dynamical} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {202--209},
     publisher = {mathdoc},
     volume = {245},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_245_a19/}
}
TY  - JOUR
AU  - M. Nilsson
TI  - $p$-Adic Monomial Dynamical Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 202
EP  - 209
VL  - 245
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_245_a19/
LA  - en
ID  - TM_2004_245_a19
ER  - 
%0 Journal Article
%A M. Nilsson
%T $p$-Adic Monomial Dynamical Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 202-209
%V 245
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_245_a19/
%G en
%F TM_2004_245_a19
M. Nilsson. $p$-Adic Monomial Dynamical Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected topics of $p$-adic mathematical physics and analysis, Tome 245 (2004), pp. 202-209. http://geodesic.mathdoc.fr/item/TM_2004_245_a19/

[1] Albeverio S., Khrennikov A. Yu., Kloeden P., “Memory retrieval as a $p$-adic dynamical system”, Biosystems, 49 (1999), 105–115 | DOI

[2] Arrowsmith D. K., Vivaldi F., “Geometry of $p$-adic Siegel discs”, Physica D., 71 (1994), 222–236 | DOI | MR | Zbl

[3] Benedetto R. L., Fatou components in $p$-adic dynamics, PhD Thes. Dept. Math., May 1998, Brown Univ.

[4] Dubischar D., Gundlach V. M., Khrennikov A., Steinkamp O., “Attractors of random dynamical systems over $p$-adic numbers and a model of “noisy” cognitive processes”, Physica D., 130 (1999), 1–12 | DOI | MR | Zbl

[5] Gouvêa F. Q., $p$-Adic numbers: An introduction, Springer, Berlin, 1997 | MR | Zbl

[6] Khrennikov A. Yu., “$p$-Adic discrete dynamical systems and collective behaviour of information states in cognitive models”, Discrete Dynamics in Nature and Society, 5 (2000), 59–69 | DOI

[7] Khrennikov A. Yu., “Human subconscious as a $p$-adic dynamical system”, J. Theor. Biology, 193 (1998), 179–196 | DOI

[8] Khrennikov A. Yu., Non-Archimedean analysis: Quantum paradoxes, dynamical systems and biological models, Kluwer, Dordrecht, 1997 | MR | Zbl

[9] Khrennikov A., Nilsson M., “On the number of cycles of $p$-adic dynamical systems”, J. Number Theory, 90:2 (2001), 255–264 | DOI | MR | Zbl

[10] Khrennikov A., Nilsson M., Nyqvist R., “The asymptotic number of periodic points of discrete polynomial $p$-adic dynamical system”, Ultrametric functional analysis, Proc. Seventh Intern. Conf. on $p$-Adic Analysis, Contemp. Math., 319, Amer. Math. Soc., Providence, RI, 2003, 159–166 | MR | Zbl

[11] Lubin J., “Non-Archimedean dynamical systems”, Compos. Math., 94 (1994), 321–346 | MR | Zbl

[12] Nilsson M., Periodic points of monomials in the field of $p$-adic numbers, Tech. rept. MSI, Växjö Univ., 2002

[13] Nilsson M., “Fuzzy cycles of $p$-adic monomial dynamical systems”, Far East J. Dyn. Syst., 5:2 (2003), 149–173 | MR | Zbl

[14] Schikhof W. H., Ultrametric calculus: An introduction to $p$-adic analysis, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[15] De Smedt S., Khrennikov A. Yu., “Dynamical systems and theory of numbers”, Comment. Math. Univ. St. Pauli., 46 (1997), 117–132 | MR | Zbl