Dirac Operators and Conformal Invariants of Tori in 3-Space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 249-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the multipliers of the Floquet functions that are associated with immersions of tori into $\mathbb R^3$ (or $S^3$) form a complex curve in $\mathbb C^2$. The properties of this curve are studied. In addition, it is shown how the curve and its construction are related to the method of finite-gap integration, the Willmore functional, and harmonic mappings of the 2-torus into $S^3$.
@article{TM_2004_244_a9,
     author = {I. A. Taimanov},
     title = {Dirac {Operators} and {Conformal} {Invariants} of {Tori} in {3-Space}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {249--280},
     publisher = {mathdoc},
     volume = {244},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_244_a9/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - Dirac Operators and Conformal Invariants of Tori in 3-Space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 249
EP  - 280
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_244_a9/
LA  - ru
ID  - TM_2004_244_a9
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T Dirac Operators and Conformal Invariants of Tori in 3-Space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 249-280
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_244_a9/
%G ru
%F TM_2004_244_a9
I. A. Taimanov. Dirac Operators and Conformal Invariants of Tori in 3-Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 249-280. http://geodesic.mathdoc.fr/item/TM_2004_244_a9/

[1] Babich M. V., “Willmore surfaces, 4-particles Toda lattice and double coverings of hyperelliptic surfaces”, AMS Transl. Ser. 2, 174, 1996, 143–168 | MR | Zbl

[2] Babich M., Bobenko A., “Willmore tori with umbilic points and minimal surfaces in hyperbolic space”, Duke Math. J., 72 (1993), 151–185 | DOI | MR | Zbl

[3] Blaschke W., Vorlesungen über Differentialgeometrie, Bd. 3, Springer, Berlin, 1929 | Zbl

[4] Bobenko A. I., “All constant mean curvature tori in $R^3$, $S^3$, $H^3$ in terms of theta-functions”, Math. Ann., 290 (1991), 209–245 | DOI | MR | Zbl

[5] Bobenko A., Pinkall U., “Discrete isothermic surfaces”, J. Reine und Angew. Math., 475 (1996), 187–208 | MR | Zbl

[6] Bryant R. L., “A duality theorem for Willmore surfaces”, J. Diff. Geom., 20 (1984), 23–53 | MR | Zbl

[7] Burstall F. E., Ferus D., Pedit F., Pinkall U., “Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras”, Ann. Math. Ser. 2, 138 (1993), 173–212 | DOI | MR | Zbl

[8] Cieśliński J., Goldstein P., Sym A., “Isothermic surfaces in $E^3$ as soliton surfaces”, Phys. Lett. A., 205 (1995), 37–43 | DOI | MR | Zbl

[9] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[10] Ehlers F., Knörrer H., “An algebro-geometric interpretation of the Bäcklund-transformation for the Korteweg–de Vries equation”, Comment. Math. Helv., 57 (1982), 1–10 | DOI | MR | Zbl

[11] Eisenhart L. P., A treatise on the differential geometry of curves and surfaces, Dover. Publ., New York, 1909 | MR

[12] Feldman J., Knörrer H., Trubowitz E., “Infinite genus Riemann surfaces”, Canadian Mathematical Society. 1945–1995, v. 3, Canad. Math. Soc., Ottawa, ON, 1996, 91–111 | MR

[13] Friedrich T., “On the spinor representation of surfaces in Euclidean $3$-space”, J. Geom. and Phys., 28 (1998), 143–157 | DOI | MR | Zbl

[14] Grinevich P. G., Schmidt M. U., “Conformal invariant functionals of immersions of tori into $\mathbb{R}^3$”, J. Geom. and Phys., 26 (1998), 51–78 | DOI | MR | Zbl

[15] Guest M. A., Harmonic maps, loop groups, and integrable systems, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[16] Helein F., “Willmore immersions and loop groups”, J. Diff. Geom., 50 (1998), 331–388 | MR

[17] Hertrich-Jeromin U., Pinkall U., “Ein Beweis des Willmoreschen Vermutung für Kanaltori”, J. Reine und Angew. Math., 430 (1992), 21–34 | MR | Zbl

[18] Hitchin N., “Harmonic maps from a $2$-torus to the $3$-sphere”, J. Diff. Geom., 31 (1990), 627–710 | MR | Zbl

[19] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, DAN SSSR, 77 (1951), 11–14 | Zbl

[20] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 26:4 (1971), 15–41 | MR | Zbl

[21] Kenmotsu K., “Weierstrass formula for surfaces of prescribed mean curvature”, Math. Ann., 245 (1979), 89–99 | DOI | MR | Zbl

[22] Konopelchenko B. G., “Induced surfaces and their integrable dynamics”, Stud. Appl. Math., 96 (1996), 9–52 | MR

[23] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–206 | MR

[24] Krichever I. M., “Spektralnaya teoriya dvumernykh periodicheskikh operatorov i ee prilozheniya”, UMN, 44:2 (1989), 121–184 | MR | Zbl

[25] Kuchment P. A., “Teoriya Floke dlya uravnenii v chastnykh proizvodnykh”, UMN, 34:4 (1982), 3–52 | MR

[26] Kuchment P., Floquet theory for partial differential equations, Birkhäuser, Basel, 1993 | MR | Zbl

[27] Kusner R., “Comparison surfaces for the Willmore problem”, Pacif. J. Math., 138 (1989), 317–345 | MR | Zbl

[28] Langer J., Singer D., “Curves in the hyperbolic plane and mean curvature of tori in $3$-space”, Bull. London Math. Soc., 16 (1984), 531–534 | DOI | MR | Zbl

[29] Li P., Yau S. T., “A conformal invariant and applications to the Willmore conjecture and the first eigenvalue for compact surfaces”, Invent. Math., 69 (1982), 269–291 | DOI | MR | Zbl

[30] Matsutani S., “Immersion anomaly of Dirac operator on surface in $\mathbb{R}^3$”, Rev. Math. Phys., 11 (1999), 171–186 | DOI | MR | Zbl

[31] Montiel S., Ros A., “Minimal immersions of surfaces by the first eigenfunctions and conformal area”, Invent. Math., 83 (1986), 153–166 | DOI | MR | Zbl

[32] Pedit F., Pinkall U., “Quaternionic analysis on Riemann surfaces and differential geometry”, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math., Extra Vol. II (1998), 389–400 | MR | Zbl

[33] Pinkall U., “Hopf tori in $S^3$”, Invent. Math., 81 (1985), 379–386 | DOI | MR | Zbl

[34] Pinkall U., Sterling I., “On the classification of constant mean curvature tori”, Ann. Math. Ser. 2, 130 (1989), 407–451 | DOI | MR | Zbl

[35] Pohlmeyer K., “Integrable Hamiltonian systems and interactions through constraints”, Commun. Math. Phys., 46 (1976), 207–221 | DOI | MR | Zbl

[36] Ruh E. A., Vilms J., “The tension field of the Gauss map”, Trans. Amer. Math. Soc., 149 (1970), 569–573 | DOI | MR | Zbl

[37] Simon L., “Existence of surfaces minimizing the Willmore functional”, Commun. Anal. Geom., 1 (1993), 281–326 | MR | Zbl

[38] Taimanov I. A., “Modified Novikov–Veselov equation and differential geometry of surfaces”, AMS Transl. Ser. 2, 179, 1997, 133–151 | MR | Zbl

[39] Taimanov I. A., “Surfaces of revolution in terms of solitons”, Ann. Global Anal. Geom., 15 (1997), 419–435 | DOI | MR | Zbl

[40] Taimanov I. A., “Predstavlenie Veiershtrassa zamknutykh poverkhnostei v $\mathbb{R}^3$”, Funkts. analiz i ego pril., 32:4 (1998), 49–62 | MR | Zbl

[41] Taimanov I. A., “Predstavlenie Veiershtrassa sfer v $\mathbb{R}^3$, chisla Uillmora i solitonnye sfery”, Tr. MIAN, 225, 1999, 339–361 | MR | Zbl

[42] Taimanov I. A., “Konechnozonnye resheniya modifitsirovannykh uravnenii Veselova–Novikova, ikh spektralnye svoistva i prilozheniya”, Sib. mat. zhurn., 40:6 (1999), 1352–1363 | MR | Zbl

[43] Thomsen G., “Grundlangen der konformen Flächentheorie”, Abh. Math. Sem. Univ. Hamburg, 3 (1924), 31–56 | DOI

[44] Uhlenbeck K., “Harmonic maps into Lie groups (classical solutions of the chiral model)”, J. Diff. Geom., 30 (1989), 1–50 | MR | Zbl

[45] Willmore T. J., “Note on embedded surfaces”, An. Şti. Univ. “Al. I. Cuza” Iaşi. (S.N.). Secţ. I a Mat., 11B (1965), 493–496 | MR | Zbl

[46] Zakharov V. E., Mikhailov A. V., “Relyativistski-invariantnye dvumernye modeli teorii polya, integriruemye metodom obratnoi zadachi rasseyaniya”, ZhETF, 74:6 (1978), 1953–1973 | MR