Dirac Operators and Conformal Invariants of Tori in 3-Space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 249-280

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the multipliers of the Floquet functions that are associated with immersions of tori into $\mathbb R^3$ (or $S^3$) form a complex curve in $\mathbb C^2$. The properties of this curve are studied. In addition, it is shown how the curve and its construction are related to the method of finite-gap integration, the Willmore functional, and harmonic mappings of the 2-torus into $S^3$.
@article{TM_2004_244_a9,
     author = {I. A. Taimanov},
     title = {Dirac {Operators} and {Conformal} {Invariants} of {Tori} in {3-Space}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {249--280},
     publisher = {mathdoc},
     volume = {244},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_244_a9/}
}
TY  - JOUR
AU  - I. A. Taimanov
TI  - Dirac Operators and Conformal Invariants of Tori in 3-Space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 249
EP  - 280
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_244_a9/
LA  - ru
ID  - TM_2004_244_a9
ER  - 
%0 Journal Article
%A I. A. Taimanov
%T Dirac Operators and Conformal Invariants of Tori in 3-Space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 249-280
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_244_a9/
%G ru
%F TM_2004_244_a9
I. A. Taimanov. Dirac Operators and Conformal Invariants of Tori in 3-Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 249-280. http://geodesic.mathdoc.fr/item/TM_2004_244_a9/