On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 87-114

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the bifurcations of periodic orbits in two-parameter families of two-dimensional diffeomorphisms close to a diffeomorphism with a uadratic homoclinic tangency of the manifolds of a saddle fixed point of neutral type (with multipliers $\lambda$ and $\gamma$ such that $|\lambda|1$, $|\gamma|>1$, and $\lambda\gamma =1$). In particular, we consider the question of the birth of closed invariant curves from “weak focus” periodic orbits (i.e. those with multipliers $e^{\pm i\psi}$, where $0\psi\pi $). It is shown that the first Lyapunov value of such an orbit is nonzero in general, and its sign coincides with the sign of a “separatrix value” that is a function of the coefficients of a return map near the global piece of the homoclinic orbit.
@article{TM_2004_244_a5,
     author = {S. V. Gonchenko and V. S. Gonchenko},
     title = {On {Bifurcations} of {Birth} of {Closed} {Invariant} {Curves} in the {Case} of {Two-Dimensional} {Diffeomorphisms} with {Homoclinic} {Tangencies}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {87--114},
     publisher = {mathdoc},
     volume = {244},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_244_a5/}
}
TY  - JOUR
AU  - S. V. Gonchenko
AU  - V. S. Gonchenko
TI  - On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 87
EP  - 114
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_244_a5/
LA  - ru
ID  - TM_2004_244_a5
ER  - 
%0 Journal Article
%A S. V. Gonchenko
%A V. S. Gonchenko
%T On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 87-114
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_244_a5/
%G ru
%F TM_2004_244_a5
S. V. Gonchenko; V. S. Gonchenko. On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 87-114. http://geodesic.mathdoc.fr/item/TM_2004_244_a5/