On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 87-114
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the bifurcations of periodic orbits in two-parameter families of two-dimensional diffeomorphisms close to a diffeomorphism with a uadratic homoclinic tangency of the manifolds of a saddle fixed point of neutral type (with multipliers $\lambda$ and $\gamma$ such that $|\lambda|1$, $|\gamma|>1$, and $\lambda\gamma =1$). In particular, we consider the question of the birth of closed invariant curves from “weak focus” periodic orbits (i.e. those with multipliers $e^{\pm i\psi}$, where $0\psi\pi $). It is shown that the first Lyapunov value of such an orbit is nonzero in general, and its sign coincides with the sign of a “separatrix value” that is a function of the coefficients of a return map near the global piece of the homoclinic orbit.
@article{TM_2004_244_a5,
author = {S. V. Gonchenko and V. S. Gonchenko},
title = {On {Bifurcations} of {Birth} of {Closed} {Invariant} {Curves} in the {Case} of {Two-Dimensional} {Diffeomorphisms} with {Homoclinic} {Tangencies}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {87--114},
publisher = {mathdoc},
volume = {244},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2004_244_a5/}
}
TY - JOUR AU - S. V. Gonchenko AU - V. S. Gonchenko TI - On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 87 EP - 114 VL - 244 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2004_244_a5/ LA - ru ID - TM_2004_244_a5 ER -
%0 Journal Article %A S. V. Gonchenko %A V. S. Gonchenko %T On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2004 %P 87-114 %V 244 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2004_244_a5/ %G ru %F TM_2004_244_a5
S. V. Gonchenko; V. S. Gonchenko. On Bifurcations of Birth of Closed Invariant Curves in the Case of Two-Dimensional Diffeomorphisms with Homoclinic Tangencies. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 87-114. http://geodesic.mathdoc.fr/item/TM_2004_244_a5/