Foliated Functions and an Averaged Weighted Shift Operator for Perturbations of Hyperbolic Mappings
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 35-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to study the perturbations of a family of mappings with a hyperbolic mixing attractor, an apparatus of foliated functions is developed. Foliated functions are analogues of distributions based on smooth measures on leaves (traces), which are embedded manifolds in a neighborhood of the attractor. The dimension of such manifolds must coincide with the dimension of the expanding foliation, and the values of a foliated function on a trace must vary smoothly under smooth transverse deformations of the trace (which include deformations of the measure itself).
@article{TM_2004_244_a3,
     author = {V. I. Bakhtin},
     title = {Foliated {Functions} and an {Averaged} {Weighted} {Shift} {Operator} for {Perturbations} of {Hyperbolic} {Mappings}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {35--64},
     publisher = {mathdoc},
     volume = {244},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_244_a3/}
}
TY  - JOUR
AU  - V. I. Bakhtin
TI  - Foliated Functions and an Averaged Weighted Shift Operator for Perturbations of Hyperbolic Mappings
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 35
EP  - 64
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_244_a3/
LA  - ru
ID  - TM_2004_244_a3
ER  - 
%0 Journal Article
%A V. I. Bakhtin
%T Foliated Functions and an Averaged Weighted Shift Operator for Perturbations of Hyperbolic Mappings
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 35-64
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_244_a3/
%G ru
%F TM_2004_244_a3
V. I. Bakhtin. Foliated Functions and an Averaged Weighted Shift Operator for Perturbations of Hyperbolic Mappings. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 35-64. http://geodesic.mathdoc.fr/item/TM_2004_244_a3/

[1] Bakhtin V. I., “Pryamoi metod postroeniya invariantnoi mery na giperbolicheskom attraktore”, Izv. RAN. Ser. mat., 56:5 (1992), 934–957 | MR | Zbl

[2] Bakhtin V. I., “Sluchainye protsessy, porozhdennye giperbolicheskoi posledovatelnostyu otobrazhenii, I”, Izv. RAN. Ser. mat., 58:2 (1994), 40–72 | Zbl

[3] Bakhtin V. I., “Sluchainye protsessy, porozhdennye giperbolicheskoi posledovatelnostyu otobrazhenii, II”, Izv. RAN. Ser. mat., 58:3 (1994), 184–195 | MR | Zbl

[4] Bouen R. E., Metody simvolicheskoi dinamiki, Sb. statei, Matematika. Novoe v zarubezh. nauke, 13, Mir, M., 1979, 245 pp.

[5] Pesin Ya. B., “Obschaya teoriya gladkikh giperbolicheskikh dinamicheskikh sistem”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 2, VINITI, M., 1985, 123–173 | MR