Mean Distality and Tightness
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 312-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

A relationship between the entropy invariant and a certain property of topological dynamical systems with a finite invariant measure $\mu$ is studied. This property means that, after removing a $\mu$-null set, there are no distinct mean proximal points in the system (a pair $x,y$ is mean proximal with respect to a homeomorphism $T$ of a compact metric space with a metric $d$ if $\varlimsup\frac1{2n+1}\sum^n_{-n} d(T^ix, T^iy) = 0$).
@article{TM_2004_244_a13,
     author = {D. Ornstein and V. Weiss},
     title = {Mean {Distality} and {Tightness}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {312--319},
     publisher = {mathdoc},
     volume = {244},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_244_a13/}
}
TY  - JOUR
AU  - D. Ornstein
AU  - V. Weiss
TI  - Mean Distality and Tightness
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 312
EP  - 319
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_244_a13/
LA  - en
ID  - TM_2004_244_a13
ER  - 
%0 Journal Article
%A D. Ornstein
%A V. Weiss
%T Mean Distality and Tightness
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 312-319
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_244_a13/
%G en
%F TM_2004_244_a13
D. Ornstein; V. Weiss. Mean Distality and Tightness. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 312-319. http://geodesic.mathdoc.fr/item/TM_2004_244_a13/

[1] Auslander J., “Mean-$L$-stable systems”, Ill. J. Math., 3 (1959), 566–579 | MR | Zbl

[2] Denker M., Grillenberg C., Sigmund K., Ergodic theory on compact spaces, Lect. Notes Math., 527, Springer, Berlin, 1976 | MR | Zbl

[3] Lindenstrauss E., “Measurable distal and topological distal systems”, Ergod. Th. and Dyn. Syst., 19 (1999), 1063–1076 | DOI | MR | Zbl

[4] Ornstein D. S., Weiss B., “Every transformation is bilaterally deterministic”, Israel J. Math., 21 (1975), 154–158 | DOI | MR | Zbl

[5] Rothstein A., “Veršik processes: first steps”, Israel J. Math., 36 (1980), 205–224 | DOI | MR | Zbl