North--South Homeomorphisms of the Sierpi\'nski Carpet and the Menger Curve
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 305-311
Voir la notice de l'article provenant de la source Math-Net.Ru
A homeomorphism $f$ is North–South (or loxodromic) if it has an attracting
fixed point $x^+$, a repelling fixed point $x^-$, and $\lim_{n\to+\infty}
f^{\pm n}(x)=x^\pm$ for every $x\neq x^+,x^-$. We show that, up to
conjugacy, there are exactly four North–South homeomorphisms on the
Sierpiński curve $X$, and one on the Menger curve $M$.
Every countable group acts effectively on the Menger curve $M$ (but there
exist many finite groups with no effective action on the Sierpiński
curve). All epimorphisms from $\pi_1M$ to $\mathbb Z$ are equivalent (up to a homeomorphism of $M$); the analogous statement for $\mathbb Z/2\mathbb Z$ is false.
@article{TM_2004_244_a12,
author = {G. Levitt},
title = {North--South {Homeomorphisms} of the {Sierpi\'nski} {Carpet} and the {Menger} {Curve}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {305--311},
publisher = {mathdoc},
volume = {244},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2004_244_a12/}
}
TY - JOUR AU - G. Levitt TI - North--South Homeomorphisms of the Sierpi\'nski Carpet and the Menger Curve JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2004 SP - 305 EP - 311 VL - 244 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2004_244_a12/ LA - en ID - TM_2004_244_a12 ER -
G. Levitt. North--South Homeomorphisms of the Sierpi\'nski Carpet and the Menger Curve. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 305-311. http://geodesic.mathdoc.fr/item/TM_2004_244_a12/