North–South Homeomorphisms of the Sierpiński Carpet and the Menger Curve
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 305-311
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A homeomorphism $f$ is North–South (or loxodromic) if it has an attracting fixed point $x^+$, a repelling fixed point $x^-$, and $\lim_{n\to+\infty} f^{\pm n}(x)=x^\pm$ for every $x\neq x^+,x^-$. We show that, up to conjugacy, there are exactly four North–South homeomorphisms on the Sierpiński curve $X$, and one on the Menger curve $M$. Every countable group acts effectively on the Menger curve $M$ (but there exist many finite groups with no effective action on the Sierpiński curve). All epimorphisms from $\pi_1M$ to $\mathbb Z$ are equivalent (up to a homeomorphism of $M$); the analogous statement for $\mathbb Z/2\mathbb Z$ is false.
@article{TM_2004_244_a12,
     author = {G. Levitt},
     title = {North{\textendash}South {Homeomorphisms} of the {Sierpi\'nski} {Carpet} and the {Menger} {Curve}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {305--311},
     year = {2004},
     volume = {244},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_244_a12/}
}
TY  - JOUR
AU  - G. Levitt
TI  - North–South Homeomorphisms of the Sierpiński Carpet and the Menger Curve
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 305
EP  - 311
VL  - 244
UR  - http://geodesic.mathdoc.fr/item/TM_2004_244_a12/
LA  - en
ID  - TM_2004_244_a12
ER  - 
%0 Journal Article
%A G. Levitt
%T North–South Homeomorphisms of the Sierpiński Carpet and the Menger Curve
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 305-311
%V 244
%U http://geodesic.mathdoc.fr/item/TM_2004_244_a12/
%G en
%F TM_2004_244_a12
G. Levitt. North–South Homeomorphisms of the Sierpiński Carpet and the Menger Curve. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 305-311. http://geodesic.mathdoc.fr/item/TM_2004_244_a12/

[1] Aarts J. M., Oversteegen L. G., “The dynamics of the Sierpiński curve”, Proc. Amer. Math. Soc., 120 (1994), 965–968 | DOI | MR | Zbl

[2] Anderson R. D., “A characterization of the universal curve and a proof of its homogeneity”, Ann. Math., 67 (1958), 313–324 | DOI | MR | Zbl

[3] Anderson R. D., “One-dimensional continuous curves and a homogeneity theorem”, Ann. Math., 68 (1958), 1–16 | DOI | MR | Zbl

[4] Baumslag G., Topics in combinatorial group theory, Lect. Math., ETH Zürich, Birkhäuser, Basel, 1993 | MR | Zbl

[5] Blumenthal L. M., Menger K., Studies in geometry, Freeman, San Francisco, 1970 | MR | Zbl

[6] Borsuk K., “On embedding curves in surfaces”, Fund. Math., 59 (1966), 73–89 | MR | Zbl

[7] Cannon J. W., Conner G. R., “On the fundamental groups of one-dimensional spaces”, Top. and Appl. (to appear)

[8] Champetier C., “Propriétés statistiques des groupes de présentation finie”, Adv. Math., 116 (1995), 197–262 | DOI | MR | Zbl

[9] Claytor S., “Topological immersion of Peanian continua in a spherical surface”, Ann. Math., 35 (1934), 809–835 | DOI | MR | Zbl

[10] Conner G. R., Lamoreaux J. W., “On the existence of universal covering spaces for metric spaces and subsets of the euclidean plane”, Fund. Math., 187:2 (2005), 95–110 | DOI | MR | Zbl

[11] Conner G. R., Spencer K., “Anomalous behaviors of the Hawaiian earring group”, J. Group Theory (to appear) | MR

[12] Eilenberg S., “Sur les transformations périodiques de la surface de sphère”, Fund. Math., 22 (1934), 28–41 | Zbl

[13] Giordano T., de la Harpe P., “Moyennabilité des groupes dénombrables et actions sur les espaces de Cantor”, C. R. Acad. Sci. Paris. Sér. 1, 324 (1997), 1255–1258 | MR | Zbl

[14] Homma T., Kinoshita S., “On the regularity of homeomorphisms of $E^n$”, J. Math. Soc. Japan., 5 (1953), 365–371 | DOI | MR | Zbl

[15] Homma T., Kinoshita S., “On a topological characterization of the dilatation in $E^3$”, Osaka Math. J., 6 (1954), 135–143 | MR | Zbl

[16] Husch L. S., “A topological characterization of the dilation in $E^n$”, Proc. Amer. Math. Soc., 28 (1971), 234–236 | DOI | MR | Zbl

[17] Kapovich M., Kleiner B., “Hyperbolic groups with low-dimensional boundary”, Ann. Sci. École Norm. Supér, 33 (2000), 647–669 | MR | Zbl

[18] Kinoshita S., “On quasi-translations in $3$-space”, Fund. Math., 56 (1964), 69–79 | MR | Zbl

[19] Krasinkiewicz J., “On homeomorphisms of the Sierpiński curve”, Prace Mat., 12 (1969), 255–257 | MR | Zbl

[20] Levitt G., “Homéomorphismes dynamiquement simples de l'ensemble de Cantor”, Enseign. Math., 44 (1998), 279–289 | MR | Zbl

[21] Levitt G., Lustig M., “Most automorphisms of a hyperbolic group have very simple dynamics”, Ann. Sci. École Norm. Supér, 33 (2000), 507–517 | MR | Zbl

[22] Levitt G., Lustig M., “Periodic ends, growth rates, Hölder dynamics for automorphisms of free groups”, Comment. Math. Helv., 75 (2000), 415–430 | DOI | MR

[23] Mayer J. C., Oversteegen L. G., Tymchatyn E. D., “The Menger curve. Characterization and extension of homeomorphisms of non-locally-separating closed subsets”, Diss. Math. Rozprawy Mat., 252 (1986) | MR | Zbl

[24] Moise E. E., “Remarks on the Claytor embedding theorem”, Duke Math. J., 19 (1952), 199–202 | DOI | MR | Zbl

[25] Whyburn G. T., “Topological characterization of the Sierpiński curve”, Fund. Math., 45 (1958), 320–324 | MR | Zbl