North--South Homeomorphisms of the Sierpi\'nski Carpet and the Menger Curve
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 305-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

A homeomorphism $f$ is North–South (or loxodromic) if it has an attracting fixed point $x^+$, a repelling fixed point $x^-$, and $\lim_{n\to+\infty} f^{\pm n}(x)=x^\pm$ for every $x\neq x^+,x^-$. We show that, up to conjugacy, there are exactly four North–South homeomorphisms on the Sierpiński curve $X$, and one on the Menger curve $M$. Every countable group acts effectively on the Menger curve $M$ (but there exist many finite groups with no effective action on the Sierpiński curve). All epimorphisms from $\pi_1M$ to $\mathbb Z$ are equivalent (up to a homeomorphism of $M$); the analogous statement for $\mathbb Z/2\mathbb Z$ is false.
@article{TM_2004_244_a12,
     author = {G. Levitt},
     title = {North--South {Homeomorphisms} of the {Sierpi\'nski} {Carpet} and the {Menger} {Curve}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {305--311},
     publisher = {mathdoc},
     volume = {244},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_244_a12/}
}
TY  - JOUR
AU  - G. Levitt
TI  - North--South Homeomorphisms of the Sierpi\'nski Carpet and the Menger Curve
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 305
EP  - 311
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_244_a12/
LA  - en
ID  - TM_2004_244_a12
ER  - 
%0 Journal Article
%A G. Levitt
%T North--South Homeomorphisms of the Sierpi\'nski Carpet and the Menger Curve
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 305-311
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_244_a12/
%G en
%F TM_2004_244_a12
G. Levitt. North--South Homeomorphisms of the Sierpi\'nski Carpet and the Menger Curve. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 305-311. http://geodesic.mathdoc.fr/item/TM_2004_244_a12/

[1] Aarts J. M., Oversteegen L. G., “The dynamics of the Sierpiński curve”, Proc. Amer. Math. Soc., 120 (1994), 965–968 | DOI | MR | Zbl

[2] Anderson R. D., “A characterization of the universal curve and a proof of its homogeneity”, Ann. Math., 67 (1958), 313–324 | DOI | MR | Zbl

[3] Anderson R. D., “One-dimensional continuous curves and a homogeneity theorem”, Ann. Math., 68 (1958), 1–16 | DOI | MR | Zbl

[4] Baumslag G., Topics in combinatorial group theory, Lect. Math., ETH Zürich, Birkhäuser, Basel, 1993 | MR | Zbl

[5] Blumenthal L. M., Menger K., Studies in geometry, Freeman, San Francisco, 1970 | MR | Zbl

[6] Borsuk K., “On embedding curves in surfaces”, Fund. Math., 59 (1966), 73–89 | MR | Zbl

[7] Cannon J. W., Conner G. R., “On the fundamental groups of one-dimensional spaces”, Top. and Appl. (to appear)

[8] Champetier C., “Propriétés statistiques des groupes de présentation finie”, Adv. Math., 116 (1995), 197–262 | DOI | MR | Zbl

[9] Claytor S., “Topological immersion of Peanian continua in a spherical surface”, Ann. Math., 35 (1934), 809–835 | DOI | MR | Zbl

[10] Conner G. R., Lamoreaux J. W., “On the existence of universal covering spaces for metric spaces and subsets of the euclidean plane”, Fund. Math., 187:2 (2005), 95–110 | DOI | MR | Zbl

[11] Conner G. R., Spencer K., “Anomalous behaviors of the Hawaiian earring group”, J. Group Theory (to appear) | MR

[12] Eilenberg S., “Sur les transformations périodiques de la surface de sphère”, Fund. Math., 22 (1934), 28–41 | Zbl

[13] Giordano T., de la Harpe P., “Moyennabilité des groupes dénombrables et actions sur les espaces de Cantor”, C. R. Acad. Sci. Paris. Sér. 1, 324 (1997), 1255–1258 | MR | Zbl

[14] Homma T., Kinoshita S., “On the regularity of homeomorphisms of $E^n$”, J. Math. Soc. Japan., 5 (1953), 365–371 | DOI | MR | Zbl

[15] Homma T., Kinoshita S., “On a topological characterization of the dilatation in $E^3$”, Osaka Math. J., 6 (1954), 135–143 | MR | Zbl

[16] Husch L. S., “A topological characterization of the dilation in $E^n$”, Proc. Amer. Math. Soc., 28 (1971), 234–236 | DOI | MR | Zbl

[17] Kapovich M., Kleiner B., “Hyperbolic groups with low-dimensional boundary”, Ann. Sci. École Norm. Supér, 33 (2000), 647–669 | MR | Zbl

[18] Kinoshita S., “On quasi-translations in $3$-space”, Fund. Math., 56 (1964), 69–79 | MR | Zbl

[19] Krasinkiewicz J., “On homeomorphisms of the Sierpiński curve”, Prace Mat., 12 (1969), 255–257 | MR | Zbl

[20] Levitt G., “Homéomorphismes dynamiquement simples de l'ensemble de Cantor”, Enseign. Math., 44 (1998), 279–289 | MR | Zbl

[21] Levitt G., Lustig M., “Most automorphisms of a hyperbolic group have very simple dynamics”, Ann. Sci. École Norm. Supér, 33 (2000), 507–517 | MR | Zbl

[22] Levitt G., Lustig M., “Periodic ends, growth rates, Hölder dynamics for automorphisms of free groups”, Comment. Math. Helv., 75 (2000), 415–430 | DOI | MR

[23] Mayer J. C., Oversteegen L. G., Tymchatyn E. D., “The Menger curve. Characterization and extension of homeomorphisms of non-locally-separating closed subsets”, Diss. Math. Rozprawy Mat., 252 (1986) | MR | Zbl

[24] Moise E. E., “Remarks on the Claytor embedding theorem”, Duke Math. J., 19 (1952), 199–202 | DOI | MR | Zbl

[25] Whyburn G. T., “Topological characterization of the Sierpiński curve”, Fund. Math., 45 (1958), 320–324 | MR | Zbl