Voir la notice du chapitre de livre
@article{TM_2004_244_a11,
author = {W. Huang and Xiangdong Ye},
title = {Minimal {Sets} in {Almost} {Equicontinuous} {Systems}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {297--304},
year = {2004},
volume = {244},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2004_244_a11/}
}
W. Huang; Xiangdong Ye. Minimal Sets in Almost Equicontinuous Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 297-304. http://geodesic.mathdoc.fr/item/TM_2004_244_a11/
[1] Akin E., Auslander J., Berg K., “When is a transitive map chaotic?”, Convergence in ergodic theory and probability, Ohio State Univ. Math. Res. Inst. Publ., 5, W. de Gruyter, Berlin, 1996, 25–40 | MR | Zbl
[2] Akin E., Auslander J., Berg K., “Almost equicontinuity and the enveloping semigroup”, Contemp. Math., 215 (1998), 75–81 | MR | Zbl
[3] Akin E., Glasner E., “Residual properties and almost equicontinuity”, J. Anal. Math., 84 (2001), 243–286 | DOI | MR | Zbl
[4] Blanchard F., Host B., Maass A., “Topological complexity”, Ergod. Th. and Dyn. Syst., 20 (2000), 641–662 | DOI | MR | Zbl
[5] Downarowicz T., “Weakly almost periodic flows and hidden eigenvalues”, Contemp. Math., 215 (1998), 101–120 | MR | Zbl
[6] Ellis R., Nerurkar M., “Weakly almost periodic flows”, Trans. Amer. Math. Soc., 313 (1989), 103–119 | DOI | MR | Zbl
[7] Glasner E., Maon D., “Rigidity in topological dynamics”, Ergod. Th. and Dyn. Syst., 9 (1989), 309–320 | MR | Zbl
[8] Glasner E., Weiss B., “Sensitive dependence on initial conditions”, Nonlinearity, 6 (1993), 1067–1075 | DOI | MR | Zbl
[9] Glasner E., Weiss B., “Locally equicontinuous dynamical systems”, Colloq. Math., 84 (2000), 345–361 | MR | Zbl
[10] Katznelson Y., Weiss B., “When all points are recurrent/generic”, Ergodic theory and dynamical systems, I, Progr. Math., 10, Birkhäuser, Boston, 1981, 195–210 | MR