Nonlocal Properties of Analytic Flows on Closed Orientable Surfaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 6-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlocal asymptotic properties of analytic flows on closed orientable hyperbolic surfaces are studied. The asymptotic directions of lifts to the universal covering of semitrajectories of analytic flows with arbitrary sets of fixed points are described. A number of assertions about the properties of analytic flows are proved, in particular, (i) the density of analytic vector fields in the space of vector fields endowed with the $C^r$-topology; (ii) the boundedness of the deviation of the semitrajectories of analytic flows from the geodesics with the same asymptotic direction. The properties of points on the absolute that are reachable and unreachable by lifts of semitrajectories of analytic flows to the universal covering are studied.
@article{TM_2004_244_a1,
     author = {S. Kh. Aranson and E. V. Zhuzhoma},
     title = {Nonlocal {Properties} of {Analytic} {Flows} on {Closed} {Orientable} {Surfaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {6--22},
     publisher = {mathdoc},
     volume = {244},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2004_244_a1/}
}
TY  - JOUR
AU  - S. Kh. Aranson
AU  - E. V. Zhuzhoma
TI  - Nonlocal Properties of Analytic Flows on Closed Orientable Surfaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2004
SP  - 6
EP  - 22
VL  - 244
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2004_244_a1/
LA  - ru
ID  - TM_2004_244_a1
ER  - 
%0 Journal Article
%A S. Kh. Aranson
%A E. V. Zhuzhoma
%T Nonlocal Properties of Analytic Flows on Closed Orientable Surfaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2004
%P 6-22
%V 244
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2004_244_a1/
%G ru
%F TM_2004_244_a1
S. Kh. Aranson; E. V. Zhuzhoma. Nonlocal Properties of Analytic Flows on Closed Orientable Surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related problems of geometry, Tome 244 (2004), pp. 6-22. http://geodesic.mathdoc.fr/item/TM_2004_244_a1/

[1] Anosov D. V., “O povedenii traektorii na ploskosti Evklida ili Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh. 1”, Izv. AN SSSR. Ser. mat., 51:1 (1987), 16–43 | MR | Zbl

[2] Anosov D. V., “O povedenii traektorii na ploskosti Evklida ili Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh. 2”, Izv. AN SSSR. Ser. mat., 52:3 (1988), 451–478 | MR | Zbl

[3] Anosov D. V., “O povedenii traektorii na ploskosti Evklida ili Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh. 3”, Izv. AN SSSR. Ser. mat., 59:2 (1995), 63–96 | MR | Zbl

[4] Anosov D. V., Zhuzhoma E. V., “Asimptoticheskoe povedenie nakryvayuschikh krivykh na universalnykh nakrytiyakh poverkhnostei”, Tr. MIAN, 238, 2002, 5–54 | MR | Zbl

[5] Aranson S. Kh., “O nekotorykh arifmeticheskikh svoistvakh dinamicheskikh sistem na dvumernykh mnogoobraziyakh”, DAN SSSR, 222:2 (1975), 265–268 | MR | Zbl

[6] Aranson S. Kh., Topologicheskaya klassifikatsiya sloenii s osobennostyami i gomeomorfizmov s invariantnymi sloeniyami na zamknutykh poverkhnostyakh. Ch. 1: Sloeniya, Dep. v VINITI No 6887 V-88, Gorkii, 1988, 194 pp.

[7] Aranson S. Kh., Gorelikova I. A., Zhuzhoma E. V., “O vliyanii absolyuta na lokalnye i gladkie svoistva sloenii i gomeomorfizmov s invariantnymi sloeniyami na zamknutykh poverkhnostyakh”, Dokl. RAN, 379:2 (2001), 154–157 | MR | Zbl

[8] Aranson S. Kh., Grines V. Z., “O nekotorykh invariantakh dinamicheskikh sistem na dvumernykh mnogoobraziyakh (neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti tranzitivnykh dinamicheskikh sistem)”, Mat. sb., 90:3 (1973), 372–402 | MR | Zbl

[9] Aranson S. Kh., Grines V. Z., Zhuzhoma E. V., “O geometrii i topologii potokov i sloenii na poverkhnostyakh i probleme Anosova”, Mat. sb., 186:8 (1995), 25–66 | MR | Zbl

[10] Aranson S. Kh., Zhuzhoma E. V., “O svoistvakh absolyuta, vliyayuschikh na gladkost potokov na zamknutykh poverkhnostyakh”, Mat. zametki, 68:6 (2000), 819–829 | MR | Zbl

[11] Zhirov A. Yu., “Perechislenie giperbolicheskikh attraktorov na orientiruemykh poverkhnostyakh i primeneniya k psevdoanosovskim gomeomorfizmam”, Dokl. RAN, 330:6 (1993), 683–686 | MR | Zbl

[12] Maier A. G., “O traektoriyakh na orientiruemykh poverkhnostyakh”, Mat. sb., 12:1 (1943), 71–84 | MR

[13] Nemytskii V. V., “Topologicheskie voprosy teorii dinamicheskikh sistem”, UMN, 4:6 (1949), 91–153 | MR | Zbl

[14] Rokhlin V. A., Fuks D. B., Nachalnyi kurs topologii. Geometricheskie glavy, Nauka, M., 1977 | MR | Zbl

[15] Aranson S., Belitsky G., Zhuzhoma E., Introduction to the qualitative theory of dynamical systems on surfaces, Transl. Math. Monogr., 153, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[16] Aranson S., Grines V., Zhuzhoma E., “On Anosov–Weil problem”, Topology, 40 (2001), 475–502 | DOI | MR | Zbl

[17] Bendixson I., “Sur les courbes définiés par les equations différentielles”, Acta Math., 24 (1901), 1–88 | DOI | MR

[18] Cherry T., “Topological properties of solutions of ordinary differential equations”, Amer. J. Math., 59 (1937), 957–982 | DOI | MR | Zbl

[19] Cherry T., “Analytic quasi-periodic curves of discontinuous type on a torus”, Proc. London Math. Soc. Ser. 2, 44 (1938), 175–215 | DOI | Zbl

[20] Dos Anjos A. G., “Polynomial vector fields on the torus”, Bol. Soc. Brasil. Mat., 17:2 (1986), 1–22 | DOI | MR | Zbl

[21] Gutierrez C., “Smoothing continuous flows on 2-manifolds and recurrences”, Ergod. Theory and Dyn. Syst., 6 (1986), 17–44 | MR | Zbl

[22] Hedlund G., “Two-dimensional manifolds and transitivity”, Ann. Math., 37:3 (1936), 534–542 | DOI | MR | Zbl

[23] Hubbard J., Masur H., “Quadratic differentials and foliations”, Acta Math., 142 (1979), 221–274 | DOI | MR | Zbl

[24] Masur H., Smillie J., “Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms”, Comment. Math. Helv., 68 (1993), 289–307 | DOI | MR | Zbl

[25] Myrberg P. J., “Ein Approximationssatz für die Fuchsschen Gruppen”, Acta Math., 57 (1931), 389–409 | DOI | MR | Zbl

[26] Nikolaev I., Zhuzhoma E., Flows on 2-dimensional manifolds, Lect. Notes Math., 1705, Springer, Berlin etc., 1999 | MR | Zbl

[27] Poincare H., “Sur les courbes définies par les equations differentielles. Pt. 4”, J. Math. Pures et Appl. Sér. 4, 2 (1886), 151–217; Puankare A., “O krivykh, opredelyaemykh differentsialnymi uravneniyami”, Memuar IV, Klassiki estestvoznaniya, Gostekhteorizdat, M., L., 1947, 192–263

[28] Whitney H., “Regular families of curves”, Ann. Math., 34:2 (1933), 244–270 | DOI | MR | Zbl