Lower Bounds for Polynomial Calculus: Nonbinomial Case
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical logic and algebra, Tome 242 (2003), pp. 23-43
Voir la notice de l'article provenant de la source Math-Net.Ru
We generalize recent linear lower bounds for Polynomial Calculus based on binomial ideals. We produce a general hardness criterion (that we call immunity), which is satisfied by a random function, and prove linear lower bounds on the degree of PC refutations for a wide class of tautologies based on immune functions. As applications of our techniques, we introduce mod$_p$. Tseitin tautologies in the Boolean case (e.g. in the presence of axioms $x_i^2=x_i$), prove that they are hard for PC over fields with characteristic different from $p$, and generalize them to the flow tautologies that are based on the majority function and are proved to be hard over any field. We also prove the $\Omega(n)$ lower bound for random $k$-CNFs over fields of characteristic 2.
@article{TM_2003_242_a2,
author = {M. V. Alekhnovich and A. A. Razborov},
title = {Lower {Bounds} for {Polynomial} {Calculus:} {Nonbinomial} {Case}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {23--43},
publisher = {mathdoc},
volume = {242},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2003_242_a2/}
}
TY - JOUR AU - M. V. Alekhnovich AU - A. A. Razborov TI - Lower Bounds for Polynomial Calculus: Nonbinomial Case JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2003 SP - 23 EP - 43 VL - 242 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2003_242_a2/ LA - ru ID - TM_2003_242_a2 ER -
M. V. Alekhnovich; A. A. Razborov. Lower Bounds for Polynomial Calculus: Nonbinomial Case. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical logic and algebra, Tome 242 (2003), pp. 23-43. http://geodesic.mathdoc.fr/item/TM_2003_242_a2/