On a~Classical Correspondence between K3 Surfaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 132-168

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a K3 surface that is the intersection (i.e. a net $\mathbb P^2$) of three quadrics in $\mathbb P^5$. The curve of degenerate quadrics has degree 6 and defines a natural double covering $Y$ of $\mathbb P^2$ ramified in this curve which is again a K3. This is a classical example of a correspondence between K3 surfaces that is related to the moduli of sheaves on K3 studied by Mukai. When are general (for fixed Picard lattices) $X$ and $Y$ isomorphic? We give necessary and sufficient conditions in terms of Picard lattices of $X$ and $Y$. For example, for the Picard number 2, the Picard lattice of $X$ and $Y$ is defined by its determinant $-d$, where $d>0$, $d\equiv 1\mod 8$, and one of the equations $a^2-db^2=8$ or $a^2-db^2=-8$ has an integral solution $(a,b)$. Clearly, the set of these $d$ is infinite: $d\in \{(a^2\mp 8)/b^2\}$, where $a$ and $b$ are odd integers. This gives all possible divisorial conditions on the 19-dimensional moduli of intersections of three quadrics $X$ in $\mathbb P^5$, which imply $Y\cong X$. One of them, when $X$ has a line, is classical and corresponds to $d=17$. Similar considerations can be applied to a realization of an isomorphism $(T(X)\otimes \mathbb Q, H^{2,0}(X)) \cong (T(Y)\otimes \mathbb Q, H^{2,0}(Y))$ of transcendental periods over $\mathbb Q$ of two K3 surfaces $X$ and $Y$ by a fixed sequence of types of Mukai vectors.
@article{TM_2003_241_a7,
     author = {C. G. Madonna and V. V. Nikulin},
     title = {On {a~Classical} {Correspondence} between {K3} {Surfaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {132--168},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2003_241_a7/}
}
TY  - JOUR
AU  - C. G. Madonna
AU  - V. V. Nikulin
TI  - On a~Classical Correspondence between K3 Surfaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2003
SP  - 132
EP  - 168
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2003_241_a7/
LA  - ru
ID  - TM_2003_241_a7
ER  - 
%0 Journal Article
%A C. G. Madonna
%A V. V. Nikulin
%T On a~Classical Correspondence between K3 Surfaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 132-168
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2003_241_a7/
%G ru
%F TM_2003_241_a7
C. G. Madonna; V. V. Nikulin. On a~Classical Correspondence between K3 Surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 132-168. http://geodesic.mathdoc.fr/item/TM_2003_241_a7/