Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2003_241_a14, author = {N. A. Tyurin}, title = {Irreducibility of the {ALG(a)-Quantization}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {265--271}, publisher = {mathdoc}, volume = {241}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2003_241_a14/} }
N. A. Tyurin. Irreducibility of the ALG(a)-Quantization. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 265-271. http://geodesic.mathdoc.fr/item/TM_2003_241_a14/
[1] Ashtekar A., Schilling T., Geometrical formulation of quantum mechanics, http://arxiv.org/abs/math.gr-qc/9706069 | MR
[2] Gorodentsev A., Tyurin A., ALAG, Preprint Max-Planck-Inst. No 00-7, Bonn, 2000
[3] Gorodentsev A. L., Tyurin A. N., “Abeleva lagranzheva algebraicheskaya geometriya”, Izv. RAN. Ser. mat., 65:3 (2001), 15–50 | MR | Zbl
[4] Hurt N., Geometric quantization in action, D. Reidel, Dordrecht, 1983 | MR | Zbl
[5] Rawnsley J., Cahen M., Gutt S., “Quantization of Kaehler manifolds, 1”, J. Geom. and Phys., 7:1 (1990), 45–62 | DOI | MR | Zbl
[6] Sniatycki J., Geometric quantization and quantum mechanics, Springer, Berlin, 1980 | MR | Zbl
[7] Tyurin A., On Bohr–Sommerfeld bases, http://arxiv.org/abs/math.AG/9909084 | MR
[8] Tyurin A., Complexification of Bohr–Sommerfeld condition, Preprint Math. Inst. Univ. Oslo. No 15, Oslo, 1999
[9] Tyurin N., “Printsip sootvetstviya v abelevoi lagranzhevoi geometrii”, Izv. RAN. Ser. mat., 65:4 (2001), 191–204 | MR | Zbl
[10] Tyurin N., “Dinamicheskoe sootvetstvie v algebraicheskoi lagranzhevoi geometrii”, Izv. RAN. Ser. mat., 66:3 (2002), 175–196 | MR