Irreducibility of the ALG(a)-Quantization
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 265-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

The introduction of the ALG(a)-quantization requires a refinement of the irreducibility condition for this quantization. In this short article, we present an adequate condition and show that the ALG(a)-quantization satisfies it.
@article{TM_2003_241_a14,
     author = {N. A. Tyurin},
     title = {Irreducibility of the {ALG(a)-Quantization}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {265--271},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2003_241_a14/}
}
TY  - JOUR
AU  - N. A. Tyurin
TI  - Irreducibility of the ALG(a)-Quantization
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2003
SP  - 265
EP  - 271
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2003_241_a14/
LA  - ru
ID  - TM_2003_241_a14
ER  - 
%0 Journal Article
%A N. A. Tyurin
%T Irreducibility of the ALG(a)-Quantization
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 265-271
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2003_241_a14/
%G ru
%F TM_2003_241_a14
N. A. Tyurin. Irreducibility of the ALG(a)-Quantization. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 265-271. http://geodesic.mathdoc.fr/item/TM_2003_241_a14/

[1] Ashtekar A., Schilling T., Geometrical formulation of quantum mechanics, http://arxiv.org/abs/math.gr-qc/9706069 | MR

[2] Gorodentsev A., Tyurin A., ALAG, Preprint Max-Planck-Inst. No 00-7, Bonn, 2000

[3] Gorodentsev A. L., Tyurin A. N., “Abeleva lagranzheva algebraicheskaya geometriya”, Izv. RAN. Ser. mat., 65:3 (2001), 15–50 | MR | Zbl

[4] Hurt N., Geometric quantization in action, D. Reidel, Dordrecht, 1983 | MR | Zbl

[5] Rawnsley J., Cahen M., Gutt S., “Quantization of Kaehler manifolds, 1”, J. Geom. and Phys., 7:1 (1990), 45–62 | DOI | MR | Zbl

[6] Sniatycki J., Geometric quantization and quantum mechanics, Springer, Berlin, 1980 | MR | Zbl

[7] Tyurin A., On Bohr–Sommerfeld bases, http://arxiv.org/abs/math.AG/9909084 | MR

[8] Tyurin A., Complexification of Bohr–Sommerfeld condition, Preprint Math. Inst. Univ. Oslo. No 15, Oslo, 1999

[9] Tyurin N., “Printsip sootvetstviya v abelevoi lagranzhevoi geometrii”, Izv. RAN. Ser. mat., 65:4 (2001), 191–204 | MR | Zbl

[10] Tyurin N., “Dinamicheskoe sootvetstvie v algebraicheskoi lagranzhevoi geometrii”, Izv. RAN. Ser. mat., 66:3 (2002), 175–196 | MR