The Cone of Hilbert Nullforms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 192-209

Voir la notice de l'article provenant de la source Math-Net.Ru

A geometric–combinatorial algorithm is given that allows one, using solely the system of weights and roots, to determine the Hesselink strata of the nullcone of a linear representation of a reductive algebraic group and compute their dimensions. In particular, it provides a constructive approach to computing the dimension of the nullcone and determining all its irreducible components of maximal dimension. In the case of the adjoint representation (and, more generally, $\theta$-representation), the algorithm turns into the algorithm of classifying conjugacy classes of nilpotent elements in a semisimple Lie algebra (respectively, homogeneous nilpotent elements in a cyclically graded semisimple Lie algebra).
@article{TM_2003_241_a10,
     author = {V. L. Popov},
     title = {The {Cone} of {Hilbert} {Nullforms}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {192--209},
     publisher = {mathdoc},
     volume = {241},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2003_241_a10/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - The Cone of Hilbert Nullforms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2003
SP  - 192
EP  - 209
VL  - 241
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2003_241_a10/
LA  - ru
ID  - TM_2003_241_a10
ER  - 
%0 Journal Article
%A V. L. Popov
%T The Cone of Hilbert Nullforms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2003
%P 192-209
%V 241
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2003_241_a10/
%G ru
%F TM_2003_241_a10
V. L. Popov. The Cone of Hilbert Nullforms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and algebraic geometry, Tome 241 (2003), pp. 192-209. http://geodesic.mathdoc.fr/item/TM_2003_241_a10/