Inflation Species of Planar Tilings Which Are Not of Locally Finite Complexity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 118-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbf S$ be an inflation species in $\mathbb E^2$ with an inflation factor $\eta$. The following cases are possible: (1) $\mathbf S$ is face-to-face. Then, trivially, there are only finitely many clusters in $\mathbf S$ that fit into a circle of radius $R$, where $R$ is the maximum of the diameters of the prototiles. This property is called locally finite complexity (LFC). If a species is repetitive, it is necessarily in (LFC). (2) $\mathbf S$ is not face-to-face, but $\eta$ is a PV-number. The only class of examples of this type known to the author was published by R. Kenyon in 1992. (3) $\mathbf S$ is not face-to-face and $\eta$ is not a PV-number. For this case, a criterion will be presented that says the following: If, after a finite number of steps, a certain inequality issatisfied, then $\mathbf S$ is not in (LFC) (and, hence, cannot be repetitive). It seems that this is a generic subcase of case (3). In other words, in case (3) (LFC)-species are very rare. No inflation species is known that is not face-to-face with inflation factor $\eta$ not being a PV-number but which is nevertheless in (LFC).
@article{TM_2002_239_a7,
     author = {L. Danzer},
     title = {Inflation {Species} of {Planar} {Tilings} {Which} {Are} {Not} of {Locally} {Finite} {Complexity}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {118--126},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a7/}
}
TY  - JOUR
AU  - L. Danzer
TI  - Inflation Species of Planar Tilings Which Are Not of Locally Finite Complexity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 118
EP  - 126
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_239_a7/
LA  - en
ID  - TM_2002_239_a7
ER  - 
%0 Journal Article
%A L. Danzer
%T Inflation Species of Planar Tilings Which Are Not of Locally Finite Complexity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 118-126
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_239_a7/
%G en
%F TM_2002_239_a7
L. Danzer. Inflation Species of Planar Tilings Which Are Not of Locally Finite Complexity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 118-126. http://geodesic.mathdoc.fr/item/TM_2002_239_a7/

[1] Perron O., “Zur Theorie der Matrizen”, Math. Ann., 64 (1907), 246–263

[2] Seneta E., Nonnegative matrices, George Allen Unwin, London, 1973 | Zbl

[3] Grünbaum B., Shephard G. C., Tilings and patterns, Freeman, New York, 1987 | MR | Zbl

[4] Kenyon R., “Self-replicating tilings”, Symbolic dynamics and its applications, Contemp. Math., 135, ed. P. Walters, Amer. Math. Soc., Providence, RI, 1992, 239–263 | MR

[5] Senechal M., Quasicrystals and geometry, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[6] Nischke K.-P., Danzer L., “A construction of inflation rules based on $n$-fold symmetry”, Discr. and Comput. Geom., 15:2 (1996), 221–236 | DOI | MR | Zbl

[7] Solomyak B., “Nonperiodicity implies unique composition for self-similar translationally finite tilings”, Discr. and Comput. Geom., 20:2 (1998), 265–279 | DOI | MR | Zbl

[8] Sadun L., “Some generalizations of the pinwheel tiling”, Discr. and Comput. Geom., 20:1 (1998), 79–110 | DOI | MR | Zbl

[9] Lagarias J. C., “Geometric models for quasicrystals. I: Delone sets of finite type”, Discr. and Comput. Geom., 21:2 (1999), 161–191 | DOI | MR | Zbl

[10] Danzer L., “An inflation-species of planar triangular tilings which is not repetitive”, Ferroelectrics, 250:1–4 (2001), 163 ; Proc. Aperiodic, 2000 | DOI

[11] Danzer L., Ophuysen G., “A species of planar triangular tilings with inflation factor $\sqrt{-\tau}$”, Punjab Univ. Res. Bull. Sci., 50 (2000), 137–175 | MR

[12] Lagarias J. C., Pleasants P. A. B., Repetitive Delone sets and perfect quasicrystals, http://arxiv.org/abs/math.DS/9909033