Sails and Hilbert Bases
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 98-105
Voir la notice de l'article provenant de la source Math-Net.Ru
A sail is the boundary of a Klein polyhedron. A relation between certain properties of sails is determined. In particular, a criterion is presented for the Hilbert basis of the semigroup of integer points of a cone in $\mathbb R^3$ and $\mathbb R^4$ to be contained in the sail.
@article{TM_2002_239_a5,
author = {O. N. German},
title = {Sails and {Hilbert} {Bases}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {98--105},
publisher = {mathdoc},
volume = {239},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a5/}
}
O. N. German. Sails and Hilbert Bases. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 98-105. http://geodesic.mathdoc.fr/item/TM_2002_239_a5/