Equivariant Maps and Some Problems of the Geometry of Convex Sets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 83-97

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods of equivariant topology are applied to some problems of convex set geometry. In particular, it is proved that a pyramid homothetic to a regular pyramid of certain type with a regular $p$-gon as the base, where $p$ is an odd prime, can be inscribed in any convex $(p+5)/2$-dimensional body.
@article{TM_2002_239_a4,
     author = {A. Yu. Volovikov},
     title = {Equivariant {Maps} and {Some} {Problems} of the {Geometry} of {Convex} {Sets}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {83--97},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a4/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - Equivariant Maps and Some Problems of the Geometry of Convex Sets
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 83
EP  - 97
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_239_a4/
LA  - ru
ID  - TM_2002_239_a4
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T Equivariant Maps and Some Problems of the Geometry of Convex Sets
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 83-97
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_239_a4/
%G ru
%F TM_2002_239_a4
A. Yu. Volovikov. Equivariant Maps and Some Problems of the Geometry of Convex Sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 83-97. http://geodesic.mathdoc.fr/item/TM_2002_239_a4/