Equivariant Maps and Some Problems of the Geometry of Convex Sets
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 83-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods of equivariant topology are applied to some problems of convex set geometry. In particular, it is proved that a pyramid homothetic to a regular pyramid of certain type with a regular $p$-gon as the base, where $p$ is an odd prime, can be inscribed in any convex $(p+5)/2$-dimensional body.
@article{TM_2002_239_a4,
     author = {A. Yu. Volovikov},
     title = {Equivariant {Maps} and {Some} {Problems} of the {Geometry} of {Convex} {Sets}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {83--97},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a4/}
}
TY  - JOUR
AU  - A. Yu. Volovikov
TI  - Equivariant Maps and Some Problems of the Geometry of Convex Sets
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 83
EP  - 97
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_239_a4/
LA  - ru
ID  - TM_2002_239_a4
ER  - 
%0 Journal Article
%A A. Yu. Volovikov
%T Equivariant Maps and Some Problems of the Geometry of Convex Sets
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 83-97
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_239_a4/
%G ru
%F TM_2002_239_a4
A. Yu. Volovikov. Equivariant Maps and Some Problems of the Geometry of Convex Sets. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 83-97. http://geodesic.mathdoc.fr/item/TM_2002_239_a4/

[1] Babenko I. K., Bogatyi S. A., “K otobrazheniyu sfery v evklidovo prostranstvo”, Mat. zametki, 46:3 (1989), 3–8 | MR | Zbl

[2] Bogatyi S. A., “Topologicheskie metody v kombinatornykh zadachakh”, UMN, 41:6 (1986), 37–47 | MR

[3] Volovikov A. Yu., “K teoreme Yanga o funktsiyakh na sfere”, IX Vsesoyuz. geom. konf., Tez. soobsch., Shtiintsa, Kishinev, 1988, 68–69 | MR

[4] Volovikov A. Yu., “Teorema tipa Burzhena–Yanga dlya $\mathbb{Z}^n_p$-deistviya”, Mat. sb., 183:7 (1992), 115–144 | MR

[5] Makeev V. V., “Prostranstvennye obobscheniya nekotorykh teorem o vypuklykh figurakh”, Mat. zametki, 36:3 (1984), 405–415 | MR | Zbl

[6] Makeev V. V., “O nekotorykh voprosakh nepreryvnykh otobrazhenii sfer i zadachakh kombinatornoi geometrii”, Geometricheskie voprosy teorii funktsii i mnozhestv, Kalinin. gos. un-t, Kalinin, 1986, 75–85 | MR | Zbl

[7] Makeev V. V., “Zadacha Knastera o nepreryvnykh otobrazheniyakh sfery v evklidovo prostranstvo”, Zap. nauch. seminarov LOMI, 167, 1988, 169–178 | MR | Zbl

[8] Makeev V. V., “Zadacha Knastera i pochti sfericheskie secheniya”, Mat. sb., 180:3 (1989), 424–431 | Zbl

[9] Shvarts A. S., “Nekotorye otsenki roda topologicheskogo prostranstva v smysle Krasnoselskogo”, UMN, 12:4 (1957), 209–214 | MR | Zbl

[10] Alexander J. C., Yorke J. A., “The homotopy continuation method: numerically implementable topological procedures”, Trans. Amer. Math. Soc., 242 (1978), 271–284 | DOI | MR | Zbl

[11] Alligood K. T., “Topological conditions for the continuation of fixed points”, Lect. Notes Math., 886, 1981, 20–32 | MR | Zbl

[12] Borel A., “Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts”, Ann. Math. Ser. 2, 57 (1953), 115–207 | DOI | MR | Zbl

[13] Chen W., “Counterexamples to Knaster's conjecture”, Topology, 37:2 (1998), 401–405 | DOI | MR | Zbl

[14] Floyd E. E., “Real-valued mappings of spheres”, Proc. Amer. Math. Soc., 6 (1955), 957–959 | DOI | MR | Zbl

[15] Knaster B., “Problem 4”, Colloq. Math., 1947, no. 1, 30

[16] Munkholm H. J., “On the Borsuk–Ulam theorem for $\mathbb{Z}_{p^\alpha}$ actions on $S^{2n-1}$ and maps $S^{2n-1}\to\mathbb{R}^m$”, Osaka J. Math., 7 (1970), 451–456 | MR | Zbl

[17] Munkholm H. J., Nakaoka M., “The Borsuk–Ulam theorem and formal group laws”, Osaka J. Math., 9 (1972), 337–349 | MR | Zbl

[18] Serre J.-P., “Homologie singulière des espaces fibrés. Applications”, Ann. Math. Ser. 2, 54 (1951), 425–505 | DOI | MR | Zbl

[19] Volovikov A., “Dimension and $C$-essentiality of $\mathbb{Z}_p$-coincidence set of map”, Quest. and Answers Gen. Topol., 8:1 (1990), 207–217 | MR | Zbl

[20] Yamabe H., Yujobô Z., “On the continuous function defined on a sphere”, Osaka Math. J., 2:1 (1950), 19–22 | MR | Zbl

[21] Yang C. T., “On theorems of Borsuk–Ulam, Kakutani–Yamabe–Yujobô and Dyson, I”, Ann. Math. Ser. 2, 60 (1954), 262–282 | DOI | MR | Zbl

[22] Bourgin D. G., “Multiplicity of solutions in frame mappings”, Ill. J. Math., 9 (1965), 169–177 | MR | Zbl

[23] Su F. E., “Borsuk–Ulam implies Brouwer: A direct construction”, Amer. Math. Monthly, 104:9 (1997), 855–859 | DOI | MR | Zbl

[24] Bajmóczy E. G., Bárány I., “On a common generalization of Borsuk's and Radon's theorem”, Acta Math. Hung., 34 (1979), 347–350 | DOI | MR | Zbl

[25] Bárány I., Shlosman S. B., Szücs A., “On a topological generalization of a theorem of Tverberg”, J. London Math. Soc. Ser. 2, 23 (1981), 158–164 | DOI | MR | Zbl

[26] Tverberg H., “A generalization of Radon's theorem”, J. London Math. Soc., 41 (1966), 123–128 | DOI | MR | Zbl

[27] Sarkaria K. S., “A generalized van Kampen–Flores theorem”, Proc. Amer. Math. Soc., 111:2 (1991), 559–565 | DOI | MR | Zbl

[28] Volovikov A. Yu., “K topologicheskomu obobscheniyu teoremy Tverberga”, Mat. zametki, 59:3 (1996), 454–456 | MR | Zbl

[29] Volovikov A. Yu., “K teoreme van Kampena–Floresa”, Mat. zametki, 59:5 (1996), 663–670 | MR | Zbl

[30] Bogatyi S. A., “Tsvetnaya teorema Tverberga”, Vestn. MGU. Matematika. Mekhanika, 1999, no. 3, 14–19 | MR | Zbl

[31] Volovikov A. Yu., “Ob indekse $G$-prostranstv”, Mat. sb., 191:9 (2000), 3–22 | MR | Zbl

[32] Cohen F., Lusk E. L., “Configuration-like spaces and the Borsuk–Ulam theorem”, Proc. Amer. Math. Soc., 56 (1976), 313–317 | DOI | MR | Zbl

[33] Volovikov A. Yu., “Ob odnom svoistve funktsii na sfere”, Mat. zametki, 70:5 (2001), 679–690 | MR | Zbl