Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_239_a16, author = {N. G. Moshchevitin}, title = {To the {Blichfeldt--Mullender--Spohn} {Theorem} on {Simultaneous} {Approximation}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {268--274}, publisher = {mathdoc}, volume = {239}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a16/} }
TY - JOUR AU - N. G. Moshchevitin TI - To the Blichfeldt--Mullender--Spohn Theorem on Simultaneous Approximation JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 268 EP - 274 VL - 239 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_239_a16/ LA - ru ID - TM_2002_239_a16 ER -
N. G. Moshchevitin. To the Blichfeldt--Mullender--Spohn Theorem on Simultaneous Approximation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 268-274. http://geodesic.mathdoc.fr/item/TM_2002_239_a16/
[1] Hurwitz A., “Über die angenäherte Datstellung der Irrationalzahlen durch rationale Brüche”, Math. Ann., 39 (1891), 279–284 | DOI | MR
[2] Cassels J. W. S., “Simultaneous Diophantine approximation”, J. London Math. Soc., 30 (1955), 119–121 | DOI | MR | Zbl
[3] Nowak W. G., “A note on simultaneous Diophantine approximation”, Manuscr. Math., 36 (1981), 33–46 | DOI | MR | Zbl
[4] Minkovski H., Geometrie der Zahlen, Teubner, Berlin, 1896
[5] Blichfeldt H., “A new principle in the geometry of numbers, with some applications”, Trans. Amer. Math. Soc., 15 (1914), 227–235 | DOI | MR | Zbl
[6] Mullender P., “Lattice points in non-convex regions, I”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 51 (1948), 874–884 | MR | Zbl
[7] Mordell L., “Lattice points in some $n$-dimensional non-convex regions, I, II”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 49 (1946), 773–781, 782–792 | MR | Zbl
[8] Koksma J., Meulenbeld B., “Sur le theoreme de Minkowski, concernant un systeme de formes lineaires reelles, I, II, III, IV”, Kon. Nederl. Akad. Wetensch. Proc. Sect. Sci., 45 (1942), 256–262, 354–359, 471–478, 578–584 | MR | Zbl
[9] Spohn W. G., “Blichfeldt's theorem and simultaneous Diophantine approximation”, Amer. J. Math., 90 (1968), 885–894 | DOI | MR | Zbl
[10] Nowak W. G., “A remark concerning the $s$-dimensional simultaneous Diophantine approximation constants”, Graz. Math. Ber., 318 (1993), 105–110 | MR | Zbl
[11] Lagarias J. S., “Best simultaneous Diophantine approximation, I”, Trans. Amer. Math. Soc., 272:2 (1982), 545–554 | DOI | MR | Zbl
[12] Moschevitin N. G., “Nailuchshie sovmestnye priblizheniya: normy, signatury i asimptoticheskie napravleniya”, Mat. zametki, 67:5 (2000), 730–737 | MR | Zbl
[13] Furtwängler P., “Über die simultane Approximation von Irrationalzahlen, I, II”, Math. Ann., 96 (1927), 169–175 ; 99 (1928), 71–83 | DOI | MR | DOI | MR | Zbl
[14] Davenport H., “On a theorem of Furtwängler”, J. London Math. Soc., 30 (1955), 186–195 | DOI | MR | Zbl
[15] Skubenko B. F., “K sovmestnym priblizheniyam algebraicheskikh irratsionalnostei”, Zap. nauch. sem. LOMI, 116, 1982, 142–154 | MR | Zbl
[16] Szekeres G., “The $n$-dimensional approximation constant”, Bull. Austral. Math. Soc., 29 (1984), 119–125 | DOI | MR | Zbl
[17] Mack J. M., “Simultaneous Diophantine approximation”, J. Austral. Math. Soc. A., 24 (1977), 266–285 | DOI | MR | Zbl
[18] Nowak W. G., “Diophantine approximations in $\mathbb{R}^s$. On a method of Mordell and Armitage”, Algebraic number theory and Diophantine analysis, Proc. Intern. Conf. (Graz, Austria, Aug.–Sept. 1998), W. de Gruyter, Berlin, New York, 2000, 339–349 | MR | Zbl
[19] Gruber P. M., Lekkerkerker C. G., Geometry of numbers, North-Holland, Amsterdam, 1987 | MR | Zbl