To the Blichfeldt--Mullender--Spohn Theorem on Simultaneous Approximation
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 268-274

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to strengthening a result of Spohn based on the analysis of best approximations is suggested. Let $\alpha _1,\dots ,\alpha _m$ be real numbers. Let $c_m$ denote the least upper bound of all constants $\sigma $ for which the inequality $\max _{j=1,\dots ,m}\|p\alpha _j\| (\sigma p)^{-1/m}$ has infinitely many positive integer solutions $p$; here, $\|\cdot \|$ is the distance to the nearest integer. Lower bounds for $c_m$ that hold for all $m$ are studied.
@article{TM_2002_239_a16,
     author = {N. G. Moshchevitin},
     title = {To the {Blichfeldt--Mullender--Spohn} {Theorem} on {Simultaneous} {Approximation}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {268--274},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a16/}
}
TY  - JOUR
AU  - N. G. Moshchevitin
TI  - To the Blichfeldt--Mullender--Spohn Theorem on Simultaneous Approximation
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 268
EP  - 274
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_239_a16/
LA  - ru
ID  - TM_2002_239_a16
ER  - 
%0 Journal Article
%A N. G. Moshchevitin
%T To the Blichfeldt--Mullender--Spohn Theorem on Simultaneous Approximation
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 268-274
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_239_a16/
%G ru
%F TM_2002_239_a16
N. G. Moshchevitin. To the Blichfeldt--Mullender--Spohn Theorem on Simultaneous Approximation. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 268-274. http://geodesic.mathdoc.fr/item/TM_2002_239_a16/