The Argument of the Riemann Zeta Function on the Critical Line
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 215-238
Voir la notice du chapitre de livre
The following assertion is proved: If $N_1(T)$ is the number of sign changes of the argument of the Riemann zeta function $\zeta (s)$ on the interval $0\operatorname{Im}s\le T$ of the critical line$\operatorname{Re}s=1/2$, then, for any $a$ such that $27/82$, $T\ge T_1(a)>0$, and $H=T^a$, the inequality $N_1(T+H)-N_1(T) \ge H\log T\exp \bigl (-\frac {c\log \log T}{\sqrt {\log \log \log T}}\bigr )$ holds with a constant $c=c(a)>0$.
@article{TM_2002_239_a13,
author = {M. A. Korolev},
title = {The {Argument} of the {Riemann} {Zeta} {Function} on the {Critical} {Line}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {215--238},
year = {2002},
volume = {239},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a13/}
}
M. A. Korolev. The Argument of the Riemann Zeta Function on the Critical Line. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 215-238. http://geodesic.mathdoc.fr/item/TM_2002_239_a13/
[1] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvidenskab. B., 48:5 (1946), 89–155 | MR | Zbl
[2] Titchmarsh E. C., “The zeros of the Riemann zeta-function”, Proc. Roy. Soc. London A., 151 (1935), 234–255 | DOI | Zbl
[3] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, Izd-vo inostr. lit., M., 1953
[4] Ghosh A., “On Riemann's zeta-function—sign changes of $S(T)$”, Recent progress in analytic number theory, v. 1, Acad. Press, New York, 1981, 25–46 | MR
[5] Karatsuba A. A., “O funktsii $S(t)$”, Izv. RAN. Ser. mat., 60:5 (1996), 27–56 | MR | Zbl