The Argument of the Riemann Zeta Function on the Critical Line
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 215-238
Voir la notice de l'article provenant de la source Math-Net.Ru
The following assertion is proved: If $N_1(T)$ is the number of sign changes of the argument of the Riemann zeta function $\zeta (s)$ on the interval $0\operatorname{Im}s\le T$ of the critical line$\operatorname{Re}s=1/2$, then, for any $a$ such that $27/82$, $T\ge T_1(a)>0$, and $H=T^a$, the inequality $N_1(T+H)-N_1(T) \ge H\log T\exp \bigl (-\frac {c\log \log T}{\sqrt {\log \log \log T}}\bigr )$ holds with a constant $c=c(a)>0$.
@article{TM_2002_239_a13,
author = {M. A. Korolev},
title = {The {Argument} of the {Riemann} {Zeta} {Function} on the {Critical} {Line}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {215--238},
publisher = {mathdoc},
volume = {239},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a13/}
}
M. A. Korolev. The Argument of the Riemann Zeta Function on the Critical Line. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 215-238. http://geodesic.mathdoc.fr/item/TM_2002_239_a13/