The Argument of the Riemann Zeta Function on the Critical Line
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 215-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following assertion is proved: If $N_1(T)$ is the number of sign changes of the argument of the Riemann zeta function $\zeta (s)$ on the interval $0\operatorname{Im}s\le T$ of the critical line$\operatorname{Re}s=1/2$, then, for any $a$ such that $27/82$, $T\ge T_1(a)>0$, and $H=T^a$, the inequality $N_1(T+H)-N_1(T) \ge H\log T\exp \bigl (-\frac {c\log \log T}{\sqrt {\log \log \log T}}\bigr )$ holds with a constant $c=c(a)>0$.
@article{TM_2002_239_a13,
     author = {M. A. Korolev},
     title = {The {Argument} of the {Riemann} {Zeta} {Function} on the {Critical} {Line}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {215--238},
     publisher = {mathdoc},
     volume = {239},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_239_a13/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - The Argument of the Riemann Zeta Function on the Critical Line
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 215
EP  - 238
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_239_a13/
LA  - ru
ID  - TM_2002_239_a13
ER  - 
%0 Journal Article
%A M. A. Korolev
%T The Argument of the Riemann Zeta Function on the Critical Line
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 215-238
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_239_a13/
%G ru
%F TM_2002_239_a13
M. A. Korolev. The Argument of the Riemann Zeta Function on the Critical Line. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Discrete geometry and geometry of numbers, Tome 239 (2002), pp. 215-238. http://geodesic.mathdoc.fr/item/TM_2002_239_a13/

[1] Selberg A., “Contributions to the theory of the Riemann zeta-function”, Arch. Math. Naturvidenskab. B., 48:5 (1946), 89–155 | MR | Zbl

[2] Titchmarsh E. C., “The zeros of the Riemann zeta-function”, Proc. Roy. Soc. London A., 151 (1935), 234–255 | DOI | Zbl

[3] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, Izd-vo inostr. lit., M., 1953

[4] Ghosh A., “On Riemann's zeta-function—sign changes of $S(T)$”, Recent progress in analytic number theory, v. 1, Acad. Press, New York, 1981, 25–46 | MR

[5] Karatsuba A. A., “O funktsii $S(t)$”, Izv. RAN. Ser. mat., 60:5 (1996), 27–56 | MR | Zbl