On the Deligne--Simpson Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 158-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Deligne–Simpson problem is formulated as follows: \textit{give necessary and sufficient conditions for the choice of the conjugacy classes $C_j\subset SL(n,\mathbb C)$ or $c_j\subset sl(n,\mathbb C)$ so that there exist irreducible $(p+1)$-tuples of matrices $M_j\in C_j$ or $A_j\in c_j$ satisfying the equality $M_1\ldots M_{p+1}=I$ or $A_1+\ldots +A_{p+1}=0$}. We solve the problem for generic eigenvalues with the exception of the case of matrices $M_j$ when the greatest common divisor of the numbers $\Sigma _{j,l}(\sigma )$ of Jordan blocks of a given matrix $M_j$, with a given eigenvalue $\sigma$ and of a given size $l$ (taken over all $j$$\sigma$$l$), is $>1$. Generic eigenvalues are defined by explicit algebraic inequalities. For such eigenvalues, there exist no reducible $(p+1)$-tuples. The matrices $M_j$ and $A_j$ are interpreted as monodromy operators of regular linear systems and as matrices–residua of Fuchsian ones on Riemann's sphere.
@article{TM_2002_238_a9,
     author = {V. P. Kostov},
     title = {On the {Deligne--Simpson} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {158--195},
     publisher = {mathdoc},
     volume = {238},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a9/}
}
TY  - JOUR
AU  - V. P. Kostov
TI  - On the Deligne--Simpson Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 158
EP  - 195
VL  - 238
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_238_a9/
LA  - en
ID  - TM_2002_238_a9
ER  - 
%0 Journal Article
%A V. P. Kostov
%T On the Deligne--Simpson Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 158-195
%V 238
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_238_a9/
%G en
%F TM_2002_238_a9
V. P. Kostov. On the Deligne--Simpson Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 158-195. http://geodesic.mathdoc.fr/item/TM_2002_238_a9/

[1] Bolibrukh A. A., “Problema Rimana–Gilberta”, UMN, 45:2 (1990), 3–47 | MR | Zbl

[2] Gleizer O. A., The Deligne–Simpson problem and Berenstein–Zelevinsky triangles, Preprint, Moscow, 1994

[3] Hesselink W., “Singularities in the nilpotent scheme of a classical group”, Trans. Amer. Math. Soc., 222 (1976), 1–32 | DOI | MR | Zbl

[4] Katz N. M., Rigid local systems, Ann. Math. Stud., 139, Princeton Univ. Press, Princeton, NJ, 1996 | MR | Zbl

[5] Kostov V. P., “On the existence of monodromy groups of Fuchsian systems on Riemann's sphere with unipotent generators”, J. Dyn. and Control Syst., 2:1 (1996), 125–155 | DOI | MR | Zbl

[6] Kostov V. P., On some aspects of the Deligne–Simpson problem, arXiv: /math.AG/0005016 | MR

[7] Kostov V. P., “Some examples of rigid representations”, Serdica Math. J., 26:3 (2000), 253–276 | MR | Zbl

[8] Kostov V. P., “Quantum states of monodromy groups”, J. Dyn. and Control Syst., 5:1 (1999), 51–100 | DOI | MR | Zbl

[9] Kostov V. P., “Regular linear systems on $\mathbf{CP}^1$ and their monodromy groups”, Complex analytic methods in dynamical systems (IMPA, Jan. 1992), Astérisque, 222, Math. Soc. France, Paris, 1994, 259–283 ; Preprint Univ. Nice-Sophia Antipolis, PUMA, No 309, May 1992 | MR | Zbl

[10] Kraft H., “Parametrisierung von Konjugationsklassen in $sl_n$”, Math. Ann., 234 (1978), 209–220 | DOI | MR

[11] Kraft H., Geometrische Methoden in der Invariantentheorie, Aspects Math., D1, Vieweg, Braunschweig, Wiesbaden, 1984 | MR | Zbl

[12] Lappo-Danilevskii I. A., Primenenie funktsii ot matrits k teorii obyknovennykh differentsialnykh uravnenii, Gostekhizdat, M., 1957 | MR

[13] Levelt A. H. M., “Hypergeometric functions”, Indag. Math., 23 (1961), 361–401 | MR

[14] Simpson C. T., “Products of matrices”, Differential geometry, global analysis, and topology, Canad. Math. Soc. Conf. Proc., 12, Amer. Math. Soc., Providence, RI, 1991, 157–185 | MR

[15] Simpson C. T., Solution of a stability game, Preprint Dept. Math. Princeton Univ., Princeton, NJ, 1990

[16] Wasow W. R., Asymptotic expansions for ordinary differential equations, Krieger, Huntington, New York, 1976 | MR