On the Deligne--Simpson Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 158-195
Voir la notice de l'article provenant de la source Math-Net.Ru
The Deligne–Simpson problem is formulated as follows:
\textit{give necessary and sufficient conditions for the choice of the
conjugacy classes $C_j\subset SL(n,\mathbb C)$ or $c_j\subset sl(n,\mathbb
C)$ so that there exist irreducible $(p+1)$-tuples of matrices $M_j\in C_j$
or $A_j\in c_j$ satisfying the equality $M_1\ldots M_{p+1}=I$ or
$A_1+\ldots +A_{p+1}=0$}. We solve the problem for generic eigenvalues with
the exception of the case of matrices $M_j$ when the greatest common
divisor of the numbers $\Sigma _{j,l}(\sigma )$ of Jordan blocks of a given
matrix $M_j$, with a given eigenvalue $\sigma$ and of a given size $l$
(taken over all $j$, $\sigma$, $l$), is $>1$. Generic eigenvalues are
defined by explicit algebraic inequalities. For such eigenvalues, there
exist no reducible $(p+1)$-tuples. The matrices $M_j$ and $A_j$ are
interpreted as monodromy operators of regular linear systems and as
matrices–residua of Fuchsian ones on Riemann's sphere.
@article{TM_2002_238_a9,
author = {V. P. Kostov},
title = {On the {Deligne--Simpson} {Problem}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {158--195},
publisher = {mathdoc},
volume = {238},
year = {2002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a9/}
}
V. P. Kostov. On the Deligne--Simpson Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 158-195. http://geodesic.mathdoc.fr/item/TM_2002_238_a9/