\'Equations fonctionnelles associ\'ees \`a des fonctions analytiques
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 86-96
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a $X$, and denote by $F=f_1\dots f_p$ their product. Given a regular holonomic $\mathcal D_X$-module $\mathcal M$ and a section $m\in \mathcal M$, denote by $B(x,f_1,\dots ,f_p,m)$ the Bernstein–Sato ideal of $\mathbf C[s_1,\dots, s_p]$ consisting of polynomials $b(s_1,\dots ,s_p)$ such that there exists, in a neighborhood of $x\in F^{-1}(0)$, a differential operator $P(s_1,\dots,s_p)\in \mathcal D_X \otimes _{\mathbf C}\mathbf C[s_1,\dots , s_p]$ satisfying $P(s_1,\dots ,s_p)m f_1^{s_1+1}\dots f_p^{s_p+1} =b(s_1,\dots ,s_p)m f_1^{s_1}\dots f_p^{s_p}$. Claude Sabbah proved that this ideal is nonzero. One can associate to the characteristic variety of the $\mathcal D_X[s_1,\ldots ,s_p]$-module $\mathcal D_X[s_1,\ldots,s_p]m f_1^{s_1}\dots f_p^{s_p}$ a finite set ${\mathcal H}_{f,m}$ of hyperplanes in $\mathbf C^p$. We prove that there exists a Bernstein–Sato polynomial (i.e., a nonzero member of the Bernstein–Sato ideal) which is a product of one variable polynomials if and only if the set $\mathcal H_{f,m}$ is contained in the union of the coordinate hyperplanes. In the two variables case ($p=2$) we prove that there exist a Bernstein–Sato polynomial the higher degree form of which vanishes on and only on the set $\mathcal H_{f,m}$.
@article{TM_2002_238_a4,
author = {J. Brian\c{c}on and Ph. Maisonobe and M. Merle},
title = {\'Equations fonctionnelles associ\'ees \`a des fonctions analytiques},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {86--96},
publisher = {mathdoc},
volume = {238},
year = {2002},
language = {fr},
url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a4/}
}
TY - JOUR AU - J. Briançon AU - Ph. Maisonobe AU - M. Merle TI - \'Equations fonctionnelles associ\'ees \`a des fonctions analytiques JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 86 EP - 96 VL - 238 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_238_a4/ LA - fr ID - TM_2002_238_a4 ER -
%0 Journal Article %A J. Briançon %A Ph. Maisonobe %A M. Merle %T \'Equations fonctionnelles associ\'ees \`a des fonctions analytiques %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2002 %P 86-96 %V 238 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2002_238_a4/ %G fr %F TM_2002_238_a4
J. Briançon; Ph. Maisonobe; M. Merle. \'Equations fonctionnelles associ\'ees \`a des fonctions analytiques. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 86-96. http://geodesic.mathdoc.fr/item/TM_2002_238_a4/