Locally Quasi-Homogeneous Free Divisors Are Koszul Free
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 81-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a complex analytic manifold and $D\subset X$ be a free divisor. If $D$ is locally quasi-homogeneous, then the logarithmic de Rham complex associated to $D$ is quasi-isomorphic to $\mathbf R j_\ast (\mathbb C_{X\setminus D})$, which is a perverse sheaf. On the other hand, the logarithmic de Rham complex associated to a Koszul-free divisor is perverse. In this paper, we prove that every locally quasi-homogeneous free divisor is Koszul free.
@article{TM_2002_238_a3,
     author = {F. Calder\'on-Moreno and L. Narv\'aez-Macarro},
     title = {Locally {Quasi-Homogeneous} {Free} {Divisors} {Are} {Koszul} {Free}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {81--85},
     publisher = {mathdoc},
     volume = {238},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a3/}
}
TY  - JOUR
AU  - F. Calderón-Moreno
AU  - L. Narváez-Macarro
TI  - Locally Quasi-Homogeneous Free Divisors Are Koszul Free
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 81
EP  - 85
VL  - 238
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_238_a3/
LA  - en
ID  - TM_2002_238_a3
ER  - 
%0 Journal Article
%A F. Calderón-Moreno
%A L. Narváez-Macarro
%T Locally Quasi-Homogeneous Free Divisors Are Koszul Free
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 81-85
%V 238
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_238_a3/
%G en
%F TM_2002_238_a3
F. Calderón-Moreno; L. Narváez-Macarro. Locally Quasi-Homogeneous Free Divisors Are Koszul Free. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 81-85. http://geodesic.mathdoc.fr/item/TM_2002_238_a3/

[1] Calderón-Moreno F. J., “Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor”, Ann. Sci. École Norm. Super. Sér. 4, 32:5 (1999), 701–714 | MR | Zbl

[2] Calderón-Moreno F. J., Mond D. Q., Narváez-Macarro L., Castro-Jiménez F. J., “Logarithmic cohomology of the complement of a plane curve”, Comment. Math. Helv., 77 (2002), 24–38 | DOI | MR | Zbl

[3] Castro-Jiménez F. J., Mond D., Narváez-Macarro L., “Cohomology of the complement of a free divisor”, Trans. Amer. Math. Soc., 348:8 (1996), 3037–3049 | DOI | MR | Zbl

[4] Deligne P., Equations différentielles à points singuliers réguliers, Lect. Notes Math., 163, Springer-Verl., Berlin, Heidelberg, 1970 | MR | Zbl

[5] Grothendieck A., “On the de Rham cohomology of algebraic varieties”, Publ. Math. IHES, no. 29, 1966, 95–103 | MR

[6] Matsumura H., “Graded rings and modules”, Commutative ring theory, Lect. Notes Pure and Appl. Math., 153, Cambridge Univ. Press, Cambridge, 1994, 193–203 | MR

[7] Mebkhout Z., Le formalisme des six opérations de Grothendieck pour les $\mathcal D_X$-modules cohérents, Travaux en cours, 35, Hermann, Paris, 1989 | MR | Zbl

[8] Saito K., On the uniformization of complements of discriminant loci, Preprint Williams College, Williamstown, 1975

[9] Saito K., “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo, 27:2 (1980), 265–291 | MR | Zbl