Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2002_238_a3, author = {F. Calder\'on-Moreno and L. Narv\'aez-Macarro}, title = {Locally {Quasi-Homogeneous} {Free} {Divisors} {Are} {Koszul} {Free}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {81--85}, publisher = {mathdoc}, volume = {238}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a3/} }
TY - JOUR AU - F. Calderón-Moreno AU - L. Narváez-Macarro TI - Locally Quasi-Homogeneous Free Divisors Are Koszul Free JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2002 SP - 81 EP - 85 VL - 238 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2002_238_a3/ LA - en ID - TM_2002_238_a3 ER -
F. Calderón-Moreno; L. Narváez-Macarro. Locally Quasi-Homogeneous Free Divisors Are Koszul Free. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 81-85. http://geodesic.mathdoc.fr/item/TM_2002_238_a3/
[1] Calderón-Moreno F. J., “Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor”, Ann. Sci. École Norm. Super. Sér. 4, 32:5 (1999), 701–714 | MR | Zbl
[2] Calderón-Moreno F. J., Mond D. Q., Narváez-Macarro L., Castro-Jiménez F. J., “Logarithmic cohomology of the complement of a plane curve”, Comment. Math. Helv., 77 (2002), 24–38 | DOI | MR | Zbl
[3] Castro-Jiménez F. J., Mond D., Narváez-Macarro L., “Cohomology of the complement of a free divisor”, Trans. Amer. Math. Soc., 348:8 (1996), 3037–3049 | DOI | MR | Zbl
[4] Deligne P., Equations différentielles à points singuliers réguliers, Lect. Notes Math., 163, Springer-Verl., Berlin, Heidelberg, 1970 | MR | Zbl
[5] Grothendieck A., “On the de Rham cohomology of algebraic varieties”, Publ. Math. IHES, no. 29, 1966, 95–103 | MR
[6] Matsumura H., “Graded rings and modules”, Commutative ring theory, Lect. Notes Pure and Appl. Math., 153, Cambridge Univ. Press, Cambridge, 1994, 193–203 | MR
[7] Mebkhout Z., Le formalisme des six opérations de Grothendieck pour les $\mathcal D_X$-modules cohérents, Travaux en cours, 35, Hermann, Paris, 1989 | MR | Zbl
[8] Saito K., On the uniformization of complements of discriminant loci, Preprint Williams College, Williamstown, 1975
[9] Saito K., “Theory of logarithmic differential forms and logarithmic vector fields”, J. Fac. Sci. Univ. Tokyo, 27:2 (1980), 265–291 | MR | Zbl