\'Eventails associ\'es \`a~des fonctions analytiques
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 70-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a complex analytic manifold, $(f_1,\dots, f_p)$ be analytic functions on $X$, and denote by $F=f_1\dots f_p$ their product. Given a regular holonomic $\mathcal D_X$-module $\mathcal M$ and a section $m\in\mathcal M$, one can associate to the characteristic variety of the $\mathcal D_X[s_1,\ldots,s_p]$-module $\mathcal D_X[s_1,\ldots ,s_p]m f_1^{s_1}\dots f_p^{s_p}$ a finite set $\mathcal H_{f,m}$ of hyperplanes in $\mathbf C^p$. We study this characteristic variety and prove that the set $\mathcal H_{f,m}$ is contained in the union of the coordinate hyperplanes of $\mathbf C^p$ if and only if the morphism $f:\mathbf C^n \rightarrow \mathbf C^p$ has no blowing up in codimension zero and its critical locus is contained in the set $F=0$.
@article{TM_2002_238_a2,
     author = {J. Brian\c{c}on and Ph. Maisonobe and M. Merle},
     title = {\'Eventails associ\'es \`a~des fonctions analytiques},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {70--80},
     publisher = {mathdoc},
     volume = {238},
     year = {2002},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/item/TM_2002_238_a2/}
}
TY  - JOUR
AU  - J. Briançon
AU  - Ph. Maisonobe
AU  - M. Merle
TI  - \'Eventails associ\'es \`a~des fonctions analytiques
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2002
SP  - 70
EP  - 80
VL  - 238
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2002_238_a2/
LA  - fr
ID  - TM_2002_238_a2
ER  - 
%0 Journal Article
%A J. Briançon
%A Ph. Maisonobe
%A M. Merle
%T \'Eventails associ\'es \`a~des fonctions analytiques
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2002
%P 70-80
%V 238
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2002_238_a2/
%G fr
%F TM_2002_238_a2
J. Briançon; Ph. Maisonobe; M. Merle. \'Eventails associ\'es \`a~des fonctions analytiques. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Monodromy in problems of algebraic geometry and differential equations, Tome 238 (2002), pp. 70-80. http://geodesic.mathdoc.fr/item/TM_2002_238_a2/

[1] Briançon J., “Espaces conormaux relatifs. I: Conditions de transversalité”, Ann. Sci. École Norm. Super. Sér. 4, 30 (1997), 675–692 | MR | Zbl

[2] Briançon J., Maisonobe Ph., Merle M., “Équations fonctionnelles associées à des fonctions analytiques”, Nast. izd., 86–96 | MR | Zbl

[3] Henry J. P., Merle M., Sabbah C., “Sur la condition de Thom stricte pour un morphisme analytique complexe”, Ann. Sci. École Norm. Super. Sér. 4, 17 (1984), 227–268 | MR | Zbl

[4] Kashiwara M., Kawai T., “On holonomic systems for $\prod_{l=1}^{N}(f_{l}+\sqrt{-1}0)^{\lambda_l}$”, Publ. RIMS. Kyoto Univ., 15 (1979), 551–575 | DOI | MR | Zbl

[5] Sabbah C., Appendice à Proximité évanescente, II, Centre Math. École Polytech., Palaiseau, 1988

[6] Sabbah C., “Modules d'Alexander et $\mathcal D$-modules”, Duke Math. J., 60:3 (1990), 729–814 | DOI | MR | Zbl